DOI QR코드

DOI QR Code

Pyrocarbon hemiarthroplasty and the shoulder: biomechanical and clinical results of an emerging treatment option

  • Mohamad Y. Fares (Division of Shoulder and Elbow Surgery, Rothman Orthopedic Institute) ;
  • Jaspal Singh (Division of Shoulder and Elbow Surgery, Rothman Orthopedic Institute) ;
  • Peter Boufadel (Division of Shoulder and Elbow Surgery, Rothman Orthopedic Institute) ;
  • Matthew R. Cohn (Division of Shoulder and Elbow Surgery, Rothman Orthopedic Institute) ;
  • Joseph A. Abboud (Division of Shoulder and Elbow Surgery, Rothman Orthopedic Institute)
  • 투고 : 2023.01.11
  • 심사 : 2023.02.04
  • 발행 : 2024.03.01

초록

While shoulder hemiarthroplasty is still used to treat young patients with shoulder pathology, the use of this procedure has substantially declined in recent years due to its significant complication profile. Glenoid wear with arthrosis is one of the major postoperative complications following shoulder hemiarthroplasty, and efforts to prevent this complication led many scientists to explore alternative weight-bearing surfaces on arthroplasty implants to decrease joint wear and improve patient outcomes. Pyrolytic carbon, or pyrocarbon, is a material that has better biocompatibility, survivorship, strength, and wear resistance compared to the materials used in traditional shoulder hemiarthroplasty. Pyrocarbon implants have been used in orthopedics for over 50 years; recently, their utility in shoulder hemiarthroplasty has garnered much interest. The purpose behind the use of pyrocarbon in shoulder hemiarthroplasty is to decrease the risk of progressive glenoid wear, especially in young active patients in whom joint preservation is important. Promising survivorship and outcomes have been demonstrated by recent studies, including limited glenoid wear following pyrocarbon hemiarthroplasty. Nevertheless, these clinical studies have been limited to relatively small case series with limited long-term follow-up. Accordingly, additional research and comparative studies need to be conducted in order to properly assess the therapeutic efficacy and value of pyrocarbon hemiarthroplasty.

키워드

참고문헌

  1. Farley KX, Wilson JM, Kumar A, et al. Prevalence of shoulder arthroplasty in the United States and the increasing burden of revision shoulder arthroplasty. JB JS Open Access 2021;6:e20.00156. 
  2. Fonte H, Amorim-Barbosa T, Diniz S, Barros L, Ramos J, Claro R. Shoulder arthroplasty options for glenohumeral osteoarthritis in young and active patients (< 60 years old): a systematic review. J Shoulder Elb Arthroplast 2022;6:24715492221087014. 
  3. Best MJ, Aziz KT, Wilckens JH, McFarland EG, Srikumaran U. Increasing incidence of primary reverse and anatomic total shoulder arthroplasty in the United States. J Shoulder Elbow Surg 2021;30:1159-66.  https://doi.org/10.1016/j.jse.2020.08.010
  4. Weber S, Grehn H, Hutter R, Sommer C, Haupt S. Shoulder arthroplasty for proximal humeral fracture treatment: a retrospective functional outcome analysis. Eur J Orthop Surg Traumatol 2023;33:1581-9. 
  5. Na SS, Kim DH, Choi BC, Cho CH. Outcomes and complications after arthroplasty in patients with osteonecrosis of humeral head- systematic review. J Orthop Sci 2023;28:772-7.  https://doi.org/10.1016/j.jos.2022.04.002
  6. Nielsen KP, Amundsen A, Olsen BS, Rasmussen JV. Good long-term patient-reported outcome after shoulder arthroplasty for cuff tear arthropathy. JSES Int 2021;6:40-3. 
  7. Radnay CS, Setter KJ, Chambers L, Levine WN, Bigliani LU, Ahmad CS. Total shoulder replacement compared with humeral head replacement for the treatment of primary glenohumeral osteoarthritis: a systematic review. J Shoulder Elbow Surg 2007;16:396-402.  https://doi.org/10.1016/j.jse.2006.10.017
  8. Bryant D, Litchfield R, Sandow M, Gartsman GM, Guyatt G, Kirkley A. A comparison of pain, strength, range of motion, and functional outcomes after hemiarthroplasty and total shoulder arthroplasty in patients with osteoarthritis of the shoulder: a systematic review and meta-analysis. J Bone Joint Surg Am 2005;87:1947-56.  https://doi.org/10.2106/JBJS.D.02854
  9. Carroll RM, Izquierdo R, Vazquez M, Blaine TA, Levine WN, Bigliani LU. Conversion of painful hemiarthroplasty to total shoulder arthroplasty: long-term results. J Shoulder Elbow Surg 2004;13:599-603.  https://doi.org/10.1016/j.jse.2004.03.016
  10. Leung B, Horodyski M, Struk AM, Wright TW. Functional outcome of hemiarthroplasty compared with reverse total shoulder arthroplasty in the treatment of rotator cuff tear arthropathy. J Shoulder Elbow Surg 2012;21:319-23.  https://doi.org/10.1016/j.jse.2011.05.023
  11. Dines JS, Fealy S, Strauss EJ, et al. Outcomes analysis of revision total shoulder replacement. J Bone Joint Surg Am 2006;88:1494-500.  https://doi.org/10.2106/00004623-200607000-00010
  12. Geervliet PC, Willems JH, Sierevelt IN, Visser CP, van Noort A. Overstuffing in resurfacing hemiarthroplasty is a potential risk for failure. J Orthop Surg Res 2019;14:474. 
  13. Peker B, Polat AE, Carkci E, Senel A, Soydan C, Tuzuner T. Functional outcomes and complication analysis of plate osteosynthesis versus hemiarthroplasty in three-part and four-part proximal humerus fractures. J Pak Med Assoc 2022;72:57-61.  https://doi.org/10.47391/JPMA.1147
  14. Familiari F, Hochreiter B, Gerber C. Unacceptable failure of osteochondral glenoid allograft for biologic resurfacing of the glenoid. J Exp Orthop 2021;8:111. 
  15. Sperling JW, Cofield RH, Rowland CM. Minimum fifteen-year follow-up of Neer hemiarthroplasty and total shoulder arthroplasty in patients aged fifty years or younger. J Shoulder Elbow Surg 2004;13:604-13.  https://doi.org/10.1016/j.jse.2004.03.013
  16. Cointat C, Raynier JL, Vasseur H, et al. Short-term outcomes and survival of pyrocarbon hemiarthroplasty in the young arthritic shoulder. J Shoulder Elbow Surg 2022;31:113-22.  https://doi.org/10.1016/j.jse.2021.06.002
  17. Hirakawa Y, Ode GE, Le Coz P, et al. Poor results after pyrocarbon interpositional shoulder arthroplasty. J Shoulder Elbow Surg 2021;30:2361-9.  https://doi.org/10.1016/j.jse.2021.01.032
  18. Campos-Pereira E, Henrique-Barros L, Claro R. Pyrocarbon humeral head in a shoulder hemiarthroplasty: preliminary results at 3 years follow-up and review of the current literature. Case Rep Orthop 2021;2021:6633690. 
  19. Mehta N, Hall DJ, Pourzal R, Garrigues GE. The biomaterials of total shoulder arthroplasty: their features, function, and effect on outcomes. JBJS Rev 2020;8:e1900212. 
  20. Ramirez-Martinez I, Smith SL, Trail IA, Joyce TJ. Wear behaviour of polyethylene glenoid inserts against PyroCarbon humeral heads in shoulder arthroplasties. J Mech Behav Biomed Mater 2020;103:103553. 
  21. Stone MA, Noorzad AS, Namdari S, Abboud J. Prosthetic bearing surfaces in anatomic and reverse total shoulder arthroplasty. J Am Acad Orthop Surg 2021;29:414-22.  https://doi.org/10.5435/JAAOS-D-20-00166
  22. Edwards TB, Kadakia NR, Boulahia A, et al. A comparison of hemiarthroplasty and total shoulder arthroplasty in the treatment of primary glenohumeral osteoarthritis: results of a multicenter study. J Shoulder Elbow Surg 2003;12:207-13.  https://doi.org/10.1016/S1058-2746(02)86804-5
  23. Somerson JS, Neradilek MB, Service BC, Hsu JE, Russ SM, Matsen FA 3rd. Clinical and radiographic outcomes of the ream-and-run procedure for primary glenohumeral arthritis. J Bone Joint Surg Am 2017;99:1291-304.  https://doi.org/10.2106/JBJS.16.01201
  24. Somerson JS, Matsen FA 3rd. Functional outcomes of the ream-and-run shoulder arthroplasty: a concise follow-up of a previous report. J Bone Joint Surg Am 2017;99:1999-2003.  https://doi.org/10.2106/JBJS.17.00201
  25. Getz CL, Kearns KA, Padegimas EM, Johnston PS, Lazarus MD, Williams GR Jr. Survivorship of hemiarthroplasty with concentric glenoid reaming for glenohumeral arthritis in young, active patients with a biconcave glenoid. J Am Acad Orthop Surg 2017;25:715-23.  https://doi.org/10.5435/JAAOS-D-16-00019
  26. Schoch B, Schleck C, Cofield RH, Sperling JW. Shoulder arthroplasty in patients younger than 50 years: minimum 20-year follow-up. J Shoulder Elbow Surg 2015;24:705-10.  https://doi.org/10.1016/j.jse.2014.07.016
  27. Gadea F, Alami G, Pape G, Boileau P, Favard L. Shoulder hemiarthroplasty: outcomes and long-term survival analysis according to etiology. Orthop Traumatol Surg Res 2012;98:659-65.  https://doi.org/10.1016/j.otsr.2012.03.020
  28. Hackett DJ Jr, Hsu JE, Matsen FA 3rd. Primary shoulder hemiarthroplasty: what can be learned from 359 cases that were surgically revised. Clin Orthop Relat Res 2018;476:1031-40.  https://doi.org/10.1007/s11999.0000000000000167
  29. Herschel R, Wieser K, Morrey ME, Ramos CH, Gerber C, Meyer DC. Risk factors for glenoid erosion in patients with shoulder hemiarthroplasty: an analysis of 118 cases. J Shoulder Elbow Surg 2017;26:246-52.  https://doi.org/10.1016/j.jse.2016.06.004
  30. Parsons IM 4th, Millett PJ, Warner JJ. Glenoid wear after shoulder hemiarthroplasty: quantitative radiographic analysis. Clin Orthop Relat Res 2004;(421):120-5. 
  31. Hegyeli RJ. Artificial heart program conference: proceedings; Washington, D.C., June 9-13, 1969. National Institutes of Health; 1969. 
  32. Stanley J, Klawitter J, More R. Replacing joints with pyrolytic carbon. In: Revell PA, ed. Joint replacement technology. Elsevier; 2008. p. 631-56. 
  33. Black J, Hastings G. Handbook of biomaterial properties. Springer Science & Business Media; 2013. 
  34. Bokros JC. Carbon biomedical devices. Carbon 1977;15:353-71.  https://doi.org/10.1016/0008-6223(77)90324-4
  35. Ely JL, Emken MR, Accuntius JA, et al. Pure pyrolytic carbon: preparation and properties of a new material, On-X carbon for mechanical heart valve prostheses. J Heart Valve Dis 1998;7:626-32. 
  36. More RB, Haubold AD, Bokros JC. Pyrolytic carbon for long-term medical implants. In: Ratner B, Hoffman A, Schoen F, Lemons J, eds. Biomaterials science. Elsevier; 2013. p. 209-22. 
  37. Bellemere P. Pyrocarbon implants for the hand and wrist. Hand Surg Rehabil 2018;37:129-54.  https://doi.org/10.1016/j.hansur.2018.03.001
  38. Bokros JC. Deposition, structure, and properties of pyrolytic carbon. In: Walker PL, ed. Chemistry and physics of carbon. Vol. 5. Dekker; 1969. p. 1-118. 
  39. Kaae JL. The mechanism of the deposition of pyrolytic carbons. Carbon 1985;23:665-73.  https://doi.org/10.1016/0008-6223(85)90226-X
  40. Gilpin CB, Haubold AD, Ely JL. Fatigue crack growth and fracture of pyrolytic carbon composites. Bioceramics 1993;6:217-23. 
  41. Ma L, Sines G. Fatigue behavior of a pyrolytic carbon. J Biomed Mater Res 2000;51:61-8.  https://doi.org/10.1002/(SICI)1097-4636(200007)51:1<61::AID-JBM9>3.0.CO;2-Z
  42. Haubold AD, More RB, Bokros JC. Carbons. In: Black J, Hastings G, eds. Handbook of biomaterial properties. Elsevier; 1998. p. 464-77. 
  43. More RB, Sines G, Ma L , Bokros JC. Pyrolytic carbon. In: Wnek GE, Bowlin GL, eds. Encyclopedia of biomaterials and biomedical engineering. CRC Press; 2004. p. 1308-19. 
  44. Haubold AD. On the durability of pyrolytic carbon in vivo. Med Prog Technol 1994;20:201-8. 
  45. Bokros JC, Haubold AD, Akins RJ, Campbell LA, Griffin CD, Lane E. The durability of mechanical heart valve replacements: past experience and current trends. In: Bodnar E, Frater R, eds. Replacement cardiac valves. Pergamon Press; 1991. p. 21-48. 
  46. Schoen FJ. Carbons in heart valve prostheses: foundations and clinical performance. In: Szycher M, ed. Biocompatible polymers, metals, and composites. Technomic Publishing Company; 1983. p. 240-61.
  47. Lubowitz JH. Editorial Commentary: Shoulder arthroscopy, shoulder hemiarthroplasty, and total shoulder arthroplasty for glenohumeral osteoarthritis. Arthroscopy 2015;31:1167-8.  https://doi.org/10.1016/j.arthro.2015.04.076
  48. Pfahler M, Jena F, Neyton L, Sirveaux F, Mole D. Hemiarthroplasty versus total shoulder prosthesis: results of cemented glenoid components. J Shoulder Elbow Surg 2006;15:154-63.  https://doi.org/10.1016/j.jse.2005.07.007
  49. Sandow MJ, David H, Bentall SJ. Hemiarthroplasty vs total shoulder replacement for rotator cuff intact osteoarthritis: how do they fare after a decade. J Shoulder Elbow Surg 2013;22:877-85.  https://doi.org/10.1016/j.jse.2012.10.023
  50. Nho SJ, Nam D, Ala OL, Craig EV, Warren RF, Wright TM. Observations on retrieved glenoid components from total shoulder arthroplasty. J Shoulder Elbow Surg 2009;18:371-8.  https://doi.org/10.1016/j.jse.2008.12.006
  51. Cook SD, Beckenbaugh R, Weinstein AM, Klawitter JJ. Pyrolite carbon implants in the metacarpophalangeal joint of baboons. Orthopedics 1983;6:952-61.  https://doi.org/10.3928/0147-7447-19830801-03
  52. Hannoun A, Ouenzerfi G, Brizuela L, et al. Pyrocarbon versus cobalt-chromium in the context of spherical interposition implants: an in vitro study on cultured chondrocytes. Eur Cell Mater 2019;37:1-15.  https://doi.org/10.22203/eCM.v037a01
  53. Hussain N, Couzens G, Gilpin D, Ross M. Pyrocarbon PIPJ and MCPJ hemiarthroplasty. In: Proceedings of the 9th Congress of the International Federation of Societies for Surgery of the Hand; 2004 Jun 13-17; Budapest, Hungary. Medimond Publishing; 2004. 
  54. Klawitter JJ, Patton J, More R, Peter N, Podnos E, Ross M. In vitro comparison of wear characteristics of PyroCarbon and metal on bone: shoulder hemiarthroplasty. Shoulder Elbow 2020;12(1 Suppl):11-22.  https://doi.org/10.1177/1758573218796837
  55. Ross M, Williams D, Couzens G, Klawitter J. Pyrocarbon for joint replacement. In: Revell PA, ed. Joint replacement technology. Elsevier; 2021. p. 145-63. 
  56. Swanson AB. Silicone rubber implants for replacement of arthritis or destroyed joints in the hand. Surg Clin North Am 1968;48:1113-27.  https://doi.org/10.1016/S0039-6109(16)38639-X
  57. Caudwell M, Bayne G, Page RS. Anatomic pyrocarbon hemiarthroplasty for thumb carpometacarpal osteoarthritis in patients under 65 years: mid term results. J Hand Surg Asian Pac Vol 2018;23:469-73.  https://doi.org/10.1142/S2424835518500443
  58. Pettersson K, Amilon A, Rizzo M. Pyrolytic carbon hemiarthroplasty in the management of proximal interphalangeal joint arthritis. J Hand Surg Am 2015;40:462-8.  https://doi.org/10.1016/j.jhsa.2014.12.016
  59. Vitale MA, Hsu CC, Rizzo M, Moran SL. Pyrolytic carbon arthroplasty versus suspensionplasty for trapezial-metacarpal arthritis. J Wrist Surg 2017;6:134-43. 
  60. Smeraglia F, Basso MA, Famiglietti G, Cozzolino A, Balato G, Bernasconi A. Pyrocardan® interpositional arthroplasty for trapeziometacarpal osteoarthritis: a minimum four year follow-up. Int Orthop 2022;46:1803-10.  https://doi.org/10.1007/s00264-022-05457-3
  61. Szalay G, Meyer C, Scheufens T, Schnettler R, Christ R, Schleicher I. Pyrocarbon spacer as a trapezium replacement for arthritis of the trapeziometacarpal joint: a follow-up study of 60 cases. Acta Orthop Belg 2013;79:648-54. 
  62. Bernasek TL, Stahl JL, Pupello D. Pyrolytic carbon endoprosthetic replacement for osteonecrosis and femoral fracture of the hip: a pilot study. Clin Orthop Relat Res 2009;467:1826-32.  https://doi.org/10.1007/s11999-009-0820-z
  63. Tsitlakidis S, Doll J, Westhauser F, et al. Promising results after hemi-shoulder arthroplasty using pyrolytic carbon heads in young and middle-aged patients. Orthop Traumatol Surg Res 2021;107:102896. 
  64. Garret J, Godeneche A, Boileau P, et al. Pyrocarbon interposition shoulder arthroplasty: preliminary results from a prospective multicenter study at 2 years of follow-up. J Shoulder Elbow Surg 2017;26:1143-51.  https://doi.org/10.1016/j.jse.2017.01.002
  65. Hudek R, Werner B, Abdelkawi AF, Gohlke F. Pyrocarbon interposition shoulder arthroplasty in advanced collapse of the humeral head. Orthopade 2017;46:1034-44.  https://doi.org/10.1007/s00132-017-3495-2
  66. McBride AP, Ross M, Hoy G, et al. Mid-term outcomes of pyrolytic carbon humeral resurfacing hemiarthroplasty compared with metal humeral resurfacing and metal stemmed hemiarthroplasty for osteoarthritis in young patients: analysis from the Australian Orthopaedic Association National Joint Replacement Registry. J Shoulder Elbow Surg 2022;31:755-62.  https://doi.org/10.1016/j.jse.2021.08.017
  67. Pangaud C, Gonzalez JF, Galvin JW, Gauci MO, Boileau P. Fracture of pyrocarbon humeral head resurfacing implant: a case report. J Shoulder Elbow Surg 2020;29:e306-12. https://doi.org/10.1016/j.jse.2020.02.028