DOI QR코드

DOI QR Code

TEM investigation of helium bubble evolution in tungsten and ZrC-strengthened tungsten at 800 and 1000℃ under 40keV He+ irradiation

  • I. Ipatova (Culham Centre for Fusion Energy, United Kingdom Atomic Energy Authority, Culham Science Centre) ;
  • G. Greaves (School of Computing and Engineering, University of Huddersfield) ;
  • D. Terentyev (Belgium Nuclear Research Center) ;
  • M.R. Gilbert (Culham Centre for Fusion Energy, United Kingdom Atomic Energy Authority, Culham Science Centre) ;
  • Y.-L. Chiu (School of Metallurgy and Materials, University of Birmingham)
  • 투고 : 2023.07.04
  • 심사 : 2023.12.01
  • 발행 : 2024.04.25

초록

Helium-induced defect nucleation and accumulation in polycrystalline W and W0.5 wt%ZrC (W0.5ZrC) were studied in-situ using the transmission electron microscopy (TEM) combined with 40 keV He+ irradiation at 800 and 1000℃ at the maximum damage level of 1 dpa. Radiation-induced dislocation loops were not observed in the current study. W0.5ZrC was found to be less susceptible to irradiation damage in terms of helium bubble formation and growth, especially at lower temperature (800 ℃) when vacancies were less mobile. The ZrC particles present in the W matrix pin the forming helium bubbles via interaction between C atom and neighbouring W atom at vacancies. This reduces the capability of helium to trap a vacancy which is required to form the bubble core and, as a consequence, delays, the bubble nucleation. At 1000 ℃, significant bubble growth occurred in both materials and all the present bubbles transitioned from spherical to faceted shape, whereas at 800 ℃, the faceted helium bubble population was dominated in W.

키워드

과제정보

The authors of this work acknowledge Prof S. E. Donnelly for access to the MIAMI-2 facility (grant ref. EPSRC EP/M028283/1) through the EPSRC-funded mid-range facility, the UK National Ion Beam Centre (NS/A000059/1). This work has been part-funded by the EPSRC Energy Programme [grant number EP/W006839/1]. The authors acknowledge Prof Yu Lung Chiu and the Centre for Electron Microscopy at the University of Birmingham for the provided support and assistance.

참고문헌

  1. R.A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, S. Lisgo, et al., A full tungsten divertor for ITER: physics issues and design status, J. Nucl. Mater. 438 (2013), https://doi.org/10.1016/j.jnucmat.2013.01.008. 
  2. T. Hirai, S. Panayotis, V. Barabash, C. Amzallag, F. Escourbiac, A. Durocher, et al., Use of tungsten material for the ITER divertor, Nuclear Materials and Energy 9 (2016) 616-622, https://doi.org/10.1016/j.nme.2016.07.003. 
  3. T.R. Barrett, G. Ellwood, G. P'erez, M. Kovari, M. Fursdon, F. Domptail, et al., Progress in the engineering design and assessment of the European DEMO first wall and divertor plasma facing components, Fusion Eng. Des. 109-111 (2016) 917-924, https://doi.org/10.1016/j.fusengdes.2016.01.052. 
  4. P. Sardain, B. Michel, L. Giancarli, A. Li Puma, Y. Poitevin, J. Szczepanski, et al., Power plant conceptual study - WCLL concept, Fusion Eng. Des. 69 (2003) 769-774, https://doi.org/10.1016/S0920-3796(03)00146-7. 
  5. J.H. You, G. Mazzone, E. Visca, H. Greuner, M. Fursdon, Y. Addab, et al., Divertor of the European DEMO: engineering and technologies for power exhaust, Fusion Eng. Des. 175 (2022), https://doi.org/10.1016/j.fusengdes.2022.113010. 
  6. M. Rieth, Advanced Steels, Structural Materials, and High Heat Flux Components, FPCC Meeting, IEA, Paris, 2014. 
  7. M. Barbarino, A. Leonard, N.N. Asakura, M. Jakubowski, M. Kobayashi, B. Lipschutz, et al., Summary of the 3rd IAEA Technical Meeting on Divertor Concepts. Nuclear Fusion, vol. 60, Institute of Physics Publishing, 2020, https://doi.org/10.1088/1741-4326/ab9a0c. 
  8. G. De Temmerman, T.W. Morgan, G.G. Van Eden, T. De Kruif, M. Wirtz, J. Matejicek, et al., Effect of high-flux H/He plasma exposure on tungsten damage due to transient heat loads, J. Nucl. Mater. 463 (2015) 198-201, https://doi.org/10.1016/j.jnucmat.2014.09.075. 
  9. H. Trinkaus, B.N. Singh, C.H. Woo, Defect accumulation under cascade damage conditions, J. Nucl. Mater. 212-215 (1994) 18-28, https://doi.org/10.1016/0022-3115(94)90029-9. 
  10. L.M. Dong, N. Gao, Effect of nanoscale helium bubble on nanoindentation in tungsten, Nucl. Instrum. Methods Phys. Res. B 451 (2019) 61-64, https://doi.org/10.1016/J.NIMB.2019.05.012. 
  11. M.J. Baldwin, R.P. Doerner, Formation of helium induced nanostructure "fuzz" on various tungsten grades, J. Nucl. Mater. (2010), https://doi.org/10.1016/j.jnucmat.2010.06.034. 
  12. I. Ipatova, G. Greaves, S. Pacheco-Gutierrez, S.C. Middleburgh, M.J.D. Rushton, E. Jimenez-Melero, In-situ TEM investigation of nano-scale helium bubble evolution in tantalum-doped tungsten at 800℃, J. Nucl. Mater. (2021) 550, https://doi.org/10.1016/j.jnucmat.2021.152910. 
  13. R. Liu, Z.M. Xie, J.F. Yang, T. Zhang, T. Hao, X.P. Wang, et al., Recent progress on the R&D of W-ZrC alloys for plasma facing components in fusion devices, Nucl. Mater. Energy 16 (2018) 191-206, https://doi.org/10.1016/j.nme.2018.07.002. 
  14. T. Zhang, Y.K. Wang, Z.M. Xie, C.S. Liu, Q.F. Fang, Synergistic effects of trace ZrC/Zr on the mechanical properties and microstructure of tungsten as plasma facing materials, Nucl. Mater. Energy 19 (2019) 225-229, https://doi.org/10.1016/j.nme.2019.03.004. 
  15. S. Lang, N. Sun, J. Cao, W. Yu, Z. Yang, S. Hou, Fabrication of ultra-fine-grained wtic alloys by a simple ball-milling and hydrogen reduction method, Materials 14 (2021) 1-12, https://doi.org/10.3390/ma14195865. 
  16. Z.M. Xie, R. Liu, S. Miao, X.D. Yang, T. Zhang, X.P. Wang, et al., Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature, Sci. Rep. 5 (2015) 1-11, https://doi.org/10.1038/srep16014. 
  17. Zhang T, Xie Z, Liu C, Xiong Y. The Tungsten-Based Plasma- Facing Materials N.d.: 1-19. . 
  18. J. Linke, J. Du, T. Loewenhoff, G. Pintsuk, B. Spilker, I. Steudel, et al., Challenges for plasma-facing components in nuclear fusion, Matter Radiat. Extremes 4 (2019), https://doi.org/10.1063/1.5090100. 
  19. W. Van Renterghem, D. Terentyev, S. Balaji, C. David, A. Dubinko, C. Yin, et al., Microstructural evolution in pure and ZrC strengthened tungsten under ion irradiation at 600℃, J. Nucl. Mater. 544 (2021), 152710, https://doi.org/10.1016/j.jnucmat.2020.152710. 
  20. R.~E. Stoller, M.~B. Toloczko, G.~S. Was, A.~G. Certain, S. Dwaraknath, F. ~A. Garner, On the use of SRIM for computing radiation damage exposure, Nucl. Instrum. Methods Phys. Res. B 310 (2013) 75-80, https://doi.org/10.1016/j.nimb.2013.05.008. 
  21. M.L. Jenkins, Characterisation of radiation-damage microstructures by TEM, J. Nucl. Mater. 216 (1994) 124-156, https://doi.org/10.1016/0022-3115(94) 90010-8. 
  22. R.W. Harrison, N. Peng, R.P. Webb, J.A. Hinks, S.E. Donnelly, Characterisation of helium ion irradiated bulk tungsten: a comparison with the in-situ TEM technique, Fusion Eng. Des. 138 (2019) 210-216, https://doi.org/10.1016/j.fusengdes.2018.11.024. 
  23. I. Ipatova, R.W. Harrison, D. Terentyev, S.E. Donnelly, E. Jimenez-Melero, Thermal evolution of the proton irradiated structure in tungsten-5 wt% tantalum, J. Fusion Energy 36 (2017), https://doi.org/10.1007/s10894-017-0145-y. 
  24. J.E. Nathaniel, O. El-Atwani, S. Huang, J. Marian, A.C. Leff, J.K. Baldwin, et al., Implications of microstructure in helium-implanted nanocrystalline metals, Materials 15 (2022), https://doi.org/10.3390/ma15124092. 
  25. L.K. Keys, J. Moteff, Neutron irradiation and defect recovery of tungsten, J. Nucl. Mater. 34 (1970) 260-280, https://doi.org/10.1016/0022-3115(70)90193-5. 
  26. G.D. Samolyuk, Y.N. Osetsky, R.E. Stoller, Properties of vacancy complexes with hydrogen and helium atoms in tungsten from first principles, Fusion Sci. Technol. 71 (2017) 52-59, https://doi.org/10.13182/FST16-118. 
  27. D. Perez, L. Sandoval, S. Blondel, B.D. Wirth, B.P. Uberuaga, A.F. Voter, The mobility of small vacancy/helium complexes in tungsten and its impact on retention in fusion-relevant conditions, Sci. Rep. 7 (2017), https://doi.org/10.1038/s41598-017-02428-2. 
  28. H. Trinkaus, B.N. Singh, Helium accumulation in metals during irradiation - where do we stand? J. Nucl. Mater. 323 (2003) 229-242, https://doi.org/10.1016/J.JNUCMAT.2003.09.001. 
  29. C. Gonzalez, R. Iglesias, Migration mechanisms of helium in copper and tungsten, J. Mater. Sci. 49 (2014) 8127-8139, https://doi.org/10.1007/s10853-014-8522-7. 
  30. Y. Ueda, J.W. Coenen, G. De Temmerman, R.P. Doerner, J. Linke, V. Philipps, et al., Research status and issues of tungsten plasma facing materials for ITER and beyond, Fusion Eng. Des. 89 (2014) 901-906, https://doi.org/10.1016/J.FUSENGDES.2014.02.078. 
  31. Y.L. Liu, H.B. Zhou, Y. Zhang, G.H. Lu, G.N. Luo, Interaction of C with vacancy in W: a first-principles study, Comput. Mater. Sci. 50 (2011) 3213-3217, https://doi.org/10.1016/j.commatsci.2011.06.003. 
  32. H.B. Zhou, X. Ou, Y. Zhang, X. Shu, Y.L. Liu, G.H. Lu, Effect of carbon on helium trapping in tungsten: a first-principles investigation, J. Nucl. Mater. 440 (2013) 338-343, https://doi.org/10.1016/j.jnucmat.2013.05.070. 
  33. Q. Xu, X.Y. Ding, L.M. Luo, M. Miyamoto, M. Tokitani, J. Zhang, et al., Thermal stability and evolution of microstructures induced by He irradiation in W-TiC alloys, Nucl. Mater. Energy 15 (2018) 76-79, https://doi.org/10.1016/j.nme.2018.02.003. 
  34. X.-Y. Tan, P. Li, L.-M. Luo, Q. Xu, K. Tokunaga, X. Zan, et al., Effect of second-phase particles on the properties of W-based materials under high-heat loading, Nucl. Mater. Energy 9 (2016) 399-404, https://doi.org/10.1016/j.nme.2016.07.009. 
  35. H. Zhang, J. Sun, Y. Wang, M. Qin, T. Stirner, Molecular dynamics simulation analysis of the stress around an up-migrating helium bubble under tungsten surface and its bursting, SSRN Electron. J. (2022), https://doi.org/10.2139/ssrn.4037115. 
  36. A. Debelle, M.F. Barthe, T. Sauvage, First temperature stage evolution of irradiation-induced defects in tungsten studied by positron annihilation spectroscopy, J. Nucl. Mater. 376 (2008) 216-221, https://doi.org/10.1016/j.jnucmat.2008.03.002. 
  37. X.C. Li, Y.N. Liu, Y. Yu, G.N. Luo, X. Shu, G.H. Lu, Helium defects interactions and mechanism of helium bubble growth in tungsten: a molecular dynamics simulation, J. Nucl. Mater. 451 (2014) 356-360, https://doi.org/10.1016/j.jnucmat.2014.04.022. 
  38. Y.-Z. Niu, Y.-H. Li, Q.-Y. Ren, Z.-Z. Li, D. Terentyev, H.-Z. Ma, et al., Influence of carbon on the evolution of irradiation defects in tungsten, J. Nucl. Mater. (2023), 154393, https://doi.org/10.1016/j.jnucmat.2023.154393. 
  39. H.B. Zhou, Y.L. Liu, Y. Zhang, S. Jin, G.H. Lu, First-principles investigation of energetics and site preference of He in a W grain boundary, Nucl. Instrum. Methods Phys. Res. B 267 (2009) 3189-3192, https://doi.org/10.1016/j.nimb.2009.06.067.
  40. L. Hu, K.D. Hammond, B.D. Wirth, D. Maroudas, Interactions of mobile helium clusters with surfaces and grain boundaries of plasma-exposed tungsten, J. Appl. Phys. 115 (2014), https://doi.org/10.1063/1.4874675. 
  41. K.D. Hammond, L. Hu, D. Maroudas, B.D. Wirth, Helium impurity transport on grain boundaries: enhanced or inhibited? EPL 110 (2015) https://doi.org/10.1209/0295-5075/110/52002. 
  42. K. Niwase, T. Ezawa, F.E. Fujita, H. Kusanagi, H. Takaku, Morphology of microcavities in nickel during Helium bombardment and post-irradiation annealing, Radiat. Eff. 106 (1988) 65-76, https://doi.org/10.1080/00337578808013729. 
  43. Z.J. Bergstrom, D. Perez, O. El-Atwani, Helium bubble facetation in tungsten thin films, Scripta Mater. 220 (2022), https://doi.org/10.1016/j.scriptamat.2022.114918. 
  44. O. El-Atwani, J.A. Hinks, G. Greaves, J.P. Allain, S.A. Maloy, Grain size threshold for enhanced irradiation resistance in nanocrystalline and ultrafine tungsten, Mater. Res. Lett. 5 (2017) 343-349, https://doi.org/10.1080/21663831.2017.1292326. 
  45. E. Martinez, B.P. Uberuaga, B.D. Wirth, Atomistic modeling of helium segregation to grain boundaries in tungsten and its effect on de-cohesion, Nucl. Fusion 57 (2017), https://doi.org/10.1088/1741-4326/aa6e15.