DOI QR코드

DOI QR Code

Molecular dynamics simulation of primary irradiation damage in Ti-6Al-4V alloys

  • Tengwu He (Department of Engineering Mechanics, Key Laboratory of Hydrodynamics, Shanghai Jiao Tong University) ;
  • Xipeng Li (Department of Engineering Mechanics, Key Laboratory of Hydrodynamics, Shanghai Jiao Tong University) ;
  • Yuming Qi (Department of Engineering Mechanics, Key Laboratory of Hydrodynamics, Shanghai Jiao Tong University) ;
  • Min Zhao (Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration (CISSE)) ;
  • Miaolin Feng (Department of Engineering Mechanics, Key Laboratory of Hydrodynamics, Shanghai Jiao Tong University)
  • 투고 : 2023.05.22
  • 심사 : 2023.12.01
  • 발행 : 2024.04.25

초록

Displacement cascade behaviors of Ti-6Al-4V alloys are investigated using molecular dynamics (MD) simulation. The embedded atom method (EAM) potential including Ti, Al and V elements is modified by adding Ziegler-Biersack-Littmark (ZBL) potential to describe the short-range interaction among different atoms. The time evolution of displacement cascades at the atomic scale is quantitatively evaluated with the energy of primary knock-on atom (PKA) ranging from 0.5 keV to 15 keV, and that for pure Ti is also computed as a comparison. The effects of temperature and incident direction of PKA are studied in detail. The results show that the temperature reduces the number of surviving Frenkel pairs (FPs), and the incident direction of PKA shows little correlation with them. Furthermore, the increasing temperature promotes the point defects to form clusters but reduces the number of defects due to the accelerated recombination of vacancies and interstitial atoms at relatively high temperature. The cluster fractions of interstitials and vacancies both increase with the PKA energy, whereas the increase of interstitial cluster is slightly larger due to their higher mobility. Compared to pure Ti, the presence of Al and V is beneficial to the formation of interstitial clusters and indirectly hinders the production of vacancy clusters.

키워드

과제정보

The authors would deeply appreciate the support from the National Natural Science Foundation of China (U2067220 and 52371284), the Young Talent Project of China National Nuclear Corporation, Top Young Talents of Ten Thousand Talents Plan, and the Ling Chuang Research Project of China National Nuclear Corporation.

참고문헌

  1. C. Leyens, M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley Online Library, 2006.
  2. S. Dey, A. Dutta, P. Mukherjee, N. Gayathri, A.D. Gupta, T. Roy, Characterization of ion induced damage as a function of depth in proton irradiated pure Ti and Ti-6Al-4V, J. Alloys Compd. 821 (2020), 153441.
  3. C. Lear, J. Gigax, O. El Atwani, M. Chancey, H. Kim, N. Li, Y. Wang, S. Fensin, Effects of helium cavity size and morphology on the strength of pure titanium, Scripta Mater. 212 (2022), 114531.
  4. I.V. Gorynin, A.S. Oryshchenko, V.P. Leonov, V.I. Mikhailov, I.A. Schastlivaia, Titanium application in marine engineering and nuclear-power engineering, in: Proceedings of the 13th World Conference on Titanium, Wiley Online Library, 2016, pp. 1797-1805.
  5. A. Oryshchenko, V. Leonov, V. Mikhailov, P. Kuznetsov, A. Alexandrov, Titanium in Shipbuilding and Other Technical Applications, MATEC Web of Conferences, EDP Sciences, 2020, 02001.
  6. B. Rodchenkov, A. Kozlov, Y.G. Kuznetsov, G. Kalinin, Y.S. Strebkov, Irradiation behaviour of titanium alloys for ITER blanket modules flexible attachment, J. Nucl. Mater. 307 (2002) 421-425.
  7. H. Zhu, M. Qin, R. Aughterson, T. Wei, G. Lumpkin, Y. Ma, H. Li, The formation and accumulation of radiation-induced defects and the role of lamellar interfaces in radiation damage of titanium aluminum alloy irradiated with Kr-ions at room temperature, Acta Mater. 195 (2020) 654-667. https://doi.org/10.1016/j.actamat.2020.06.009
  8. H. Huang, X. Yuan, L. Ma, J. Lin, G. Zhang, B. Cai, Atomistic Simulations of Defect Accumulation and Evolution in Heavily Irradiated Titanium for Nuclear-Powered Spacecraft, Nuclear Engineering and Technology, 2023.
  9. M. Griffiths, D. Faulkner, R. Styles, Neutron damage in α-titanium, J. Nucl. Mater. 119 (2-3) (1983) 189-207. https://doi.org/10.1016/0022-3115(83)90196-4
  10. S. Sadi, A. Paulenova, W. Loveland, P. Watson, J. Greene, G. Zinkann, Microstructure damage of titanium films by irradiation with fission fragments, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 269 (24) (2011) 3230-3232. https://doi.org/10.1016/j.nimb.2011.04.093
  11. L. Ma, T. Liu, B. Cai, Z. Liu, G. Zhang, J. Li, H. Li, H. Huang, Molecular dynamics studies of primary irradiation damage in α-type Ti35 alloy, Phys. Status Solidi (b).
  12. W. Zhou, J. Tian, Q. Feng, J. Zheng, X. Liu, J. Xue, D. Qian, S. Peng, Molecular dynamics simulations of high-energy displacement cascades in hcp-Zr, J. Nucl. Mater. 508 (2018) 540-545. https://doi.org/10.1016/j.jnucmat.2018.06.002
  13. A.S. Gornakova, A.B. Straumal, I.I. Khodos, I.B. Gnesin, A.A. Mazilkin, N. S. Afonikova, B.B. Straumal, Effect of composition, annealing temperature, and high pressure torsion on structure and hardness of Ti-V and Ti-V-Al alloys, J. Appl. Phys. 125 (8) (2019), 082522.
  14. S.-C. Huang, E. Hall, Characterization of the effect of vanadium additions to TiAl base alloys, Acta Metall. Mater. 39 (6) (1991) 1053-1060. https://doi.org/10.1016/0956-7151(91)90192-4
  15. K. Nordlund, F. Djurabekova, Multiscale modelling of irradiation in nanostructures, J. Comput. Electron. 13 (2014) 122-141. https://doi.org/10.1007/s10825-013-0542-z
  16. Y. Zhang, S. Zhao, W.J. Weber, K. Nordlund, F. Granberg, F. Djurabekova, Atomiclevel heterogeneity and defect dynamics in concentrated solid-solution alloys, Curr. Opin. Solid State Mater. Sci. 21 (5) (2017) 221-237. https://doi.org/10.1016/j.cossms.2017.02.002
  17. A. Majorell, S. Srivatsa, R. Picu, Mechanical behavior of Ti-6Al-4V at high and moderate temperatures-Part I: experimental results, Mater. Sci. Eng., A 326 (2) (2002) 297-305. https://doi.org/10.1016/S0921-5093(01)01507-6
  18. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1) (1995) 1-19. https://doi.org/10.1006/jcph.1995.1039
  19. D. Waryoba, Z. Islam, T. Reutzel, A. Haque, Electro-strengthening of the additively manufactured Ti-6Al-4V alloy, Mater. Sci. Eng., A 798 (2020), 140062.
  20. I. Caha, A. Alves, C. Chirico, S. Tsipas, I. Rodrigues, A. Pinto, C. Grandini, L. Rocha, E. Gordo, F. Toptan, Interactions between wear and corrosion on cast and sintered Ti-12Nb alloy in comparison with the commercial Ti-6Al-4V alloy, Corrosion Sci. 176 (2020), 108925.
  21. G.J. Martyna, M.L. Klein, M. Tuckerman, Nos'e-Hoover chains: the canonical ensemble via continuous dynamics, J. Chem. Phys. 97 (4) (1992) 2635-2643. https://doi.org/10.1063/1.463940
  22. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool, Model. Simulat. Mater. Sci. Eng. 18 (1) (2009), 015012.
  23. R. Stoller, 1.11-primary radiation damage formation, Comprehensive nuclear materials (2012) 293-332.
  24. G. Ackland, D. Bacon, A. Calder, T. Harry, Computer simulation of point defect properties in dilute Fe-Cu alloy using a many-body interatomic potential, Philos. Mag. A 75 (3) (1997) 713-732. https://doi.org/10.1080/01418619708207198
  25. X. Zhou, R. Johnson, H. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Phys. Rev. B 69 (14) (2004), 144113.
  26. S. Zhao, Y. Xiong, S. Ma, J. Zhang, B. Xu, J.-J. Kai, Defect accumulation and evolution in refractory multi-principal element alloys, Acta Mater. 219 (2021), 117233.
  27. M.I. Mendelev, T. Underwood, G. Ackland, Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium, J. Chem. Phys. 145 (15) (2016), 154102.
  28. K.C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys, Woodhead Publishing, 2002.
  29. J.F. Ziegler, J.P. Biersack, The Stopping and Range of Ions in Matter, 1985. Springer.
  30. O.K. Orhan, M. Hendy, M. Ponga, Electronic effects on the radiation damage in high-entropy alloys, Acta Mater. 244 (2023), 118511.
  31. S. Wooding, D. Bacon, W. Phythian, A computer simulation study of displacement cascades in α-titanium, Philos. Mag. A 72 (5) (1995) 1261-1279. https://doi.org/10.1080/01418619508236254
  32. M. Rajput, P. Subhash, R. Srinivasan, Displacement damage study in tungsten and iron for fusion neutron irradiation, Fusion Eng. Des. 150 (2020), 111370.
  33. T. Ye, H. Yao, Y. Wu, J. Zhang, J. Wu, M. Wang, W. Tian, G. Su, S. Qiu, Primary radiation damage characteristics in displacement cascades of FeCrAl alloys, J. Nucl. Mater. 549 (2021), 152909.
  34. V. Borodin, P. Vladimirov, Damage production in atomic displacement cascades in beryllium, Nuclear Materials and Energy 9 (2016) 216-220. https://doi.org/10.1016/j.nme.2016.07.001
  35. D. Bacon, A. Calder, F. Gao, V. Kapinos, S. Wooding, Computer simulation of defect production by displacement cascades in metals, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 102 (1-4) (1995) 37-46. https://doi.org/10.1016/0168-583X(95)80114-2
  36. I. Torrens, M. Robinson, Computer simulation of atomic displacement cascades in solids, Interatomic Potentials and Simulation of Lattice Defects (1972) 423-436.
  37. B. Wirth, P. Monasterio, W. Stein, Calculation of Radiation Damage in SLAC Targets, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 2008.
  38. L.R. Greenwood, R.K. Smither, SPECTER: Neutron Damage Calculations for Materials Irradiations, Argonne National Lab., IL (USA), 1985.
  39. B. Fu, B. Xu, W. Lai, Y. Yuan, H. Xu, C. Li, Y. Jia, W. Liu, Computer simulation of displacement cascades in tungsten with modified F-S type potential, J. Nucl. Mater. 441 (1-3) (2013) 24-28. https://doi.org/10.1016/j.jnucmat.2013.05.025
  40. Y.-S. Kim, Atomistic Scale Simulations to Characterize Radiation-Induced Microstructural Evolutions in Three Basic Metallic Elements: Fe, Al, and Zr, 한양대학교, 2018.
  41. J.F. March-Rico, C.M. McSwain, B.D. Wirth, Quantifying the impact of an electronic drag force on defect production from high-energy displacement cascades in α-zirconium, J. Nucl. Mater. 542 (2020), 152539.