DOI QR코드

DOI QR Code

Conductive Rubber for Enhanced Safety in Hydrogen-based Facilities from Electrostatic Discharge

도전성 고무 매트를 이용한 수소 기반 시설에서 제전 신뢰성 향상

  • S. Lee (Department of Safety Engineering) ;
  • J. Ko (Department of Safety Engineering) ;
  • J. Song (Department of Safety Engineering) ;
  • C. Kim (Department of Safety Engineering) ;
  • C. Kim (Department of Safety Engineering) ;
  • H. S. Kim (Stanix Inc.) ;
  • M. E. Hur (RM Ltd.) ;
  • Chung J. H. (Usafe Inc.) ;
  • H. J. Song (Department of Safety Engineering)
  • 이수운 (서울과학기술대학교 안전공학과) ;
  • 고재환 (서울과학기술대학교 안전공학과) ;
  • 송지원 (서울과학기술대학교 안전공학과) ;
  • 김찬우 (서울과학기술대학교 안전공학과) ;
  • 김충일 (서울과학기술대학교 안전공학과) ;
  • 김해술 ((주)스타닉스) ;
  • 허만억 ((주)알앰) ;
  • 정재형 (유세이프) ;
  • 송형준 (서울과학기술대학교 안전공학과)
  • Received : 2023.10.24
  • Accepted : 2024.02.05
  • Published : 2024.02.29

Abstract

Hydrogen-based electricity and transportation systems are widely recognized as sustainable power sources. However, the low ignition energy of hydrogen, only 1/10th that of conventional fossil fuels, poses a safety concern involving the risk of ignition due to electrostatic discharge from facility workers. Therefore, anti-static systems are imperative for hydrogen-based electricity facilities. To address this, we propose a reliable conductive rubber mat (CRM) to ensure the safety of these facilities. Unlike conventional anti-static floors that utilize conductive paint (CP), the CRM features a uniform distribution of conductive components in chemically and mechanically stable rubber. As a result, the CRM is unyielding to polar solvents (such as ethanol and hydrosulfuric acid) and non-polar solvents (like mineral oil) without increasing its resistance. Moreover, the CRM can withstand mechanical stress. Consequently, the human-body voltage of workers on the CRM would be sufficiently low enough to protect them from hydrogen explosions, thereby enhancing overall safety.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) through the Mid-career researcher program (NRF-2022R1A2C1092582) and "Leaders in INdustryuniversity Cooperation (LINC) 3.0" Program.

References

  1. L. M. Beard, J. B. Cardell, I. Dobson, F. Galvan, D. Hawkins, W. Jewell, M. Kezunovic, T. J. Overbye, P. K. Sen and D. J. Tylavsky, "Key Technical Challenges for the Electric Power Industry and Climate Change", IEEE Transactions on Energy Conversion, Vol. 25, No. 2, pp. 465-473, 2009. https://doi.org/10.1109/TEC.2009.2032578
  2. C. Fant, B. Boehlert, K. Strzepek, P. Larsen, A. White, S. Gulati, Y. Li and J. Martinich, "Climate Change Impacts and Costs to US Electricity Transmission and Distribution Infrastructure", Energy, Vol. 195, p.116899, 2020.
  3. K. Zhang, B. Zhou, S. W. Or, C. Li, C. Y. Chung and N. Voropai, "Optimal Coordinated Control of Multirenewable- to-hudrogen Production System for Hydrogen Fueling Stations", IEEE Transactions on Industry Applications, Vol. 58, No. 2, pp. 2728-2739, 2021 https://doi.org/10.1109/TIA.2021.3093841
  4. C. Breyer, S. Khalili, D. Bogdanov, M. Ram, A. S. Oyewo, A. Aghahosseini, A. Gulagi, A. A. Solomon, D. Keiner, G. Lopez and P. A. Ostergaard, "On the History and Future of 100% Renewable Energy Systems Research", Institute of Electrical and Electronics Engineers, Vol. 10, pp. 78176-78218, 2022.
  5. Y. Tao, J. Qiu, S. Lai, X. Zhang and G. Wang, "Collaborative Planning for Electricity Distribution Network and Transportation System Considering Hydrogen Fuel Cell Vehicles", IEEE Transaction on Transportaion Electrification, Vol. 6, No. 3, pp. 1211-1225, 2020. https://doi.org/10.1109/TTE.2020.2996755
  6. X. Gong, F. Dong, M. A. Mohamed, O. M. Abdalla and Z. M. Ali, "A Secured Energy Management Architecture for Smart Hybrid Microgrids Considering PEM-Fuel Cell and Electric Vehicles", IEEE Access, Vol. 8, pp. 47807-47823, 2020. https://doi.org/10.1109/ACCESS.2020.2978789
  7. I. J. Kim, J. H. Kim and J. S. Lee, "Dynamic Analysis of Well-to-wheel Electric and Hydrogen Vehicles Greenhouse Gas Emissions: Focusing on Consumer Preferences and Power Mix Changes in South Korea", Applied Energy, Vol. 260, p. 114281, 2020.
  8. J. W. Kim, J. H. Ryu, H. H. Cho, Y. K. Oh and H. S. Lee, "A Study on Optimal Operation Strategy of Hydrogen Charging Facilities at Hydrogen Fuel Cell Train Depots", The transactions of The Korean Institute of Electrical Engineers, Vol. 71, No. 10, pp. 1467-1473, 2022. https://doi.org/10.5370/KIEE.2022.71.10.1467
  9. D. Cirrone, D. Makarov, C. Proust and V. Molkov, "Minimum Ignition Energy of Hydrogen-air Mixtures at Ambient and Cryogenic Temperatures", International Journal of Hydrogen Energy, Vol. 48, No. 43, pp. 16530-16544, 2023. https://doi.org/10.1016/j.ijhydene.2023.01.115
  10. A. Kumamoto, H. Iseki, R. Ono and T. Oda, "Measurement of Minimum Ignition Energy in Hydrogen-oxygennitrogen Premixed Gas by Spark Discharge", Journal of Physics: Conference Series. Vol. 301, No. 1, IOP Publishing, 2011.
  11. J. H. Lee and J. Y. Lim, "A Study on the Achievement of Required Safety Integrity Level to Reduce Risk for SMR On-Site Hydrogen Refueling Stations", J. Korean Soc. Saf., Vol. 35, No. 6, pp. 1-8, 2020.
  12. S. W. Choi, "A Study on the Development of an Electrostatic Eliminator and Evaluating Method of Explosion-Protection Construction", J. Korean Soc. Saf., Vol. 29, No. 6, pp. 49-54, 2014. https://doi.org/10.14346/JKOSOS.2014.29.6.049
  13. J. H. Park, J. S. Byeon, J. H. Jang, M. G. Ko, N. Y. Ahn, M. S. Choi and H. J. Song, "Electrically Reliable Perovskite PhotoVoltaic Cells Against Instantaneous KiloVolt Stress", Advanced Energy Materials, Vol. 13, No. 3, p. 2203012, 2023.
  14. M. W. Ha, S. C. Lee, M. K. Han and Y. H. Choi, "Eletrostatic Discharge Effects on AlGaN/GaN High Electron Mobility Transistor on Sapphire Substrate", The transactions of The Korean Institute of Electrical Engineers, Vol. 54, No. 3, pp. 109-113, 2005.
  15. K. T. Moon, J. H. Chung, K. S. Choi, "Experimental Study on Electrostatic Hazards of Powder in Fluidized Bed", J. Korean Soc. Saf., Vol. 25, No. 4, pp. 19-24, 2010.
  16. J. H. Yoo, "A Study on Dispersed Media Formation of Hydrocarbon Fuel by an Explosive Burster", J. Korean Soc. Saf., Vol. 31, No. 2, pp. 33-40, 2016. https://doi.org/10.14346/JKOSOS.2016.31.2.33
  17. V. Khandelwal, S. K. Sahoo, A. Kumarand G. Manik, "Electrically Conductive Green Composites based on Epoxidized Linseed Oil and Polyaniline: An Insight Into Electrical, Thermal and Mechanical Properties", Composites Part B: Engineering, Vol. 136, pp. 149-157, 2018. https://doi.org/10.1016/j.compositesb.2017.10.030
  18. A. Das, H. T. Hayvaci, M. K. Tiwari, I. S. Bayer, D. Erricolo and C. M. Megaridis, "Superhydrophobic and Conductive Carbon Naoofiber/PTFE Composite Coatings for EMI Shielding", Journal of Colloid and Interface Science, Vol. 353, No. 1, pp. 311-315, 2011. https://doi.org/10.1016/j.jcis.2010.09.017
  19. A. Oshawa, "Electrostatic Characterization of Antistatic Floors using an Equivalent Circuit Model", Journal of Electrostatics, Vol. 51-52, pp. 625-631, 2001. https://doi.org/10.1016/S0304-3886(01)00031-6
  20. H. S. Kim and H. J. Song, "Static Spark Discharge Risk Caused of Human Body Voltage in Flammable Atmosphere", The transactions of The Korean Institute of Electrical Engineers, Vol. 70, No. 11, pp. 1743-1749, 2021. https://doi.org/10.5370/KIEE.2021.70.11.1743