Acknowledgement
This study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2019R1A2C1083978) and the Fund of Biomedical Research Institute, Jeonbuk National University Hospital.
References
- Guo Y, Hao Z, Zhao S, Gong J, Yang F. Artificial intelligence in health care: bibliometric analysis. J Med Internet Res 2020;22:e18228.
- Yin J, Ngiam KY, Teo HH. Role of artificial intelligence applications in real-life clinical practice: systematic review. J Med Internet Res 2021;23:e25759.
- Schwendicke F, Samek W, Krois J. Artificial intelligence in dentistry: chances and challenges. J Dent Res 2020;99:769-74. https://doi.org/10.1177/0022034520915714
- Khanagar SB, Al-Ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, et al. Developments, application, and performance of artificial intelligence in dentistry - A systematic review. J Dent Sci 2021;16:508-22. https://doi.org/10.1016/j.jds.2020.06.019
- Shan T, Tay FR, Gu L. Application of artificial intelligence in dentistry. J Dent Res 2021;100:232-44. https://doi.org/10.1177/0022034520969115
- Quirynen M, Herrera D, Teughels W, Sanz M. Implant therapy: 40 years of experience. Periodontol 2000 2014;66:7-12. https://doi.org/10.1111/prd.12060
- Hafezeqoran A, Koodaryan R. Effect of zirconia dental implant surfaces on bone integration: a systematic review and meta-analysis. BioMed Res Int 2017;2017:9246721.
- Cervino G, Fiorillo L, Iannello G, Santonocito D, Risitano G, Cicciu M. Sandblasted and acid etched titanium dental implant surfaces systematic review and confocal microscopy evaluation. Materials (Basel) 2019;12:1763.
- Jokstad A, Braegger U, Brunski JB, Carr AB, Naert I, Wennerberg A. Quality of dental implants. Int Dent J 2003;53 Suppl 2:409-43. https://doi.org/10.1111/j.1875-595X.2003.tb00918.x
- Greenstein G, Cavallaro J. Failed dental implants: diagnosis, removal and survival of reimplantations. J Am Dent Assoc 2014;145:835-42. https://doi.org/10.14219/jada.2014.28
- Jokstad A, Ganeles J. Systematic review of clinical and patient-reported outcomes following oral rehabilitation on dental implants with a tapered compared to a non-tapered implant design. Clin Oral Implants Res 2018;29 Suppl 16:41-54. https://doi.org/10.1111/clr.13128
- Lee JH, Kim DH, Jeong SN, Choi SH. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J Periodontal Implant Sci 2018;48:114-23. https://doi.org/10.5051/jpis.2018.48.2.114
- Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent 2018;77:106-11. https://doi.org/10.1016/j.jdent.2018.07.015
- Lee JH, Kim DH, Jeong SN. Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network. Oral Dis 2020;26:152-8. https://doi.org/10.1111/odi.13223
- Schwendicke F, Chaurasia A, Arsiwala L, Lee JH, Elhennawy K, Jost-Brinkmann PG, et al. Deep learning for cephalometric landmark detection: systematic review and meta-analysis. Clin Oral Investig 2021;25:4299-309. https://doi.org/10.1007/s00784-021-03990-w
- Lee DW, Kim SY, Jeong SN, Lee JH. Artificial intelligence in fractured dental implant detection and classification: evaluation using dataset from two dental hospitals. Diagnostics (Basel) 2021;11:233.
- Takahashi T, Nozaki K, Gonda T, Mameno T, Wada M, Ikebe K. Identification of dental implants using deep learning-pilot study. Int J Implant Dent 2020;6:53.
- Hadj Said M, Le Roux MK, Catherine JH, Lan R. Development of an artificial intelligence model to identify a dental implant from a radiograph. Int J Oral Maxillofac Implants 2020;36:1077-82. https://doi.org/10.11607/jomi.8060
- Sukegawa S, Yoshii K, Hara T, Yamashita K, Nakano K, Yamamoto N, et al. Deep neural networks for dental implant system classification. Biomolecules 2020;10:984.
- Lee JH, Jeong SN. Efficacy of deep convolutional neural network algorithm for the identification and classification of dental implant systems, using panoramic and periapical radiographs: a pilot study. Medicine (Baltimore) 2020;99:e20787.
- Lee JH, Kim YT, Lee JB, Jeong SN. A performance comparison between automated deep learning and dental professionals in classification of dental implant systems from dental imaging: a multi-center study. Diagnostics (Basel) 2020;10:910.
- Kim JE, Nam NE, Shim JS, Jung YH, Cho BH, Hwang JJ. Transfer learning via deep neural networks for implant fixture system classification using periapical radiographs. J Clin Med 2020;9:1117.
- Sukegawa S, Yoshii K, Hara T, Matsuyama T, Yamashita K, Nakano K, et al. Multi-task deep learning model for classification of dental implant brand and treatment stage using dental panoramic radiograph images. Biomolecules 2021;11:815.
- da Mata Santos RP, Vieira Oliveira Prado HE, Soares Aranha Neto I, Alves de Oliveira GA, Vespasiano Silva AI, Zenobio EG, et al. Automated identification of dental implants using artificial intelligence. Int J Oral Maxillofac Implants 2021;36:918-23. https://doi.org/10.11607/jomi.8684
- Lee JH, Kim YT, Lee JB, Jeong SN. Deep learning improves implant classification by dental professionals: a multi-center evaluation of accuracy and efficiency. J Periodontal Implant Sci 2022;52:220-9. https://doi.org/10.5051/jpis.2104080204
- Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097.
- Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011;155:529-36. https://doi.org/10.7326/0003-4819-155-8-201110180-00009
- Lee JH, Lee JB, Park JI, Choi SH, Kim YT. Mechanical complication rates and optimal horizontal distance of the most distally positioned implant-supported single crowns in the posterior region: a study with a mean follow-up of 3 years. J Prosthodont 2015;24:517-24. https://doi.org/10.1111/jopr.12306
- Lee JH, Lee JB, Kim MY, Yoon JH, Choi SH, Kim YT. Mechanical and biological complication rates of the modified lateral-screw-retained implant prosthesis in the posterior region: an alternative to the conventional Implant prosthetic system. J Adv Prosthodont 2016;8:150-7. https://doi.org/10.4047/jap.2016.8.2.150
- Lee JH, Kim YT, Jeong SN, Kim NH, Lee DW. Incidence and pattern of implant fractures: a long-term follow-up multicenter study. Clin Implant Dent Relat Res 2018;20:463-9. https://doi.org/10.1111/cid.12621
- Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316:2402-10. https://doi.org/10.1001/jama.2016.17216
- Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542:115-8. https://doi.org/10.1038/nature21056
- Li Y, Li W, Xiong J, Xia J, Xie Y. Comparison of supervised and unsupervised deep learning methods for medical image synthesis between computed tomography and magnetic resonance images. BioMed Res Int 2020;2020:5193707.
- Fu J, Yang Y, Singhrao K, Ruan D, Chu FI, Low DA, et al. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Med Phys 2019;46:3788-98. https://doi.org/10.1002/mp.13672
- Shahbazian M, Vandewoude C, Wyatt J, Jacobs R. Comparative assessment of panoramic radiography and CBCT imaging for radiodiagnostics in the posterior maxilla. Clin Oral Investig 2014;18:293-300. https://doi.org/10.1007/s00784-013-0963-x