
ABSTRACT

Deep learning (DL) offers promising performance in computer vision tasks and is 
highly suitable for dental image recognition and analysis. We evaluated the accuracy 
of DL algorithms in identifying and classifying dental implant systems (DISs) using 
dental imaging. In this systematic review and meta-analysis, we explored the MEDLINE/
PubMed, Scopus, Embase, and Google Scholar databases and identified studies published 
between January 2011 and March 2022. Studies conducted on DL approaches for DIS 
identification or classification were included, and the accuracy of the DL models was 
evaluated using panoramic and periapical radiographic images. The quality of the selected 
studies was assessed using QUADAS-2. This review was registered with PROSPERO 
(CRDCRD42022309624). From 1,293 identified records, 9 studies were included in this 
systematic review and meta-analysis. The DL-based implant classification accuracy was no 
less than 70.75% (95% confidence interval [CI], 65.6%–75.9%) and no higher than 98.19 
(95% CI, 97.8%–98.5%). The weighted accuracy was calculated, and the pooled sample size 
was 46,645, with an overall accuracy of 92.16% (95% CI, 90.8%–93.5%). The risk of bias and 
applicability concerns were judged as high for most studies, mainly regarding data selection 
and reference standards. DL models showed high accuracy in identifying and classifying DISs 
using panoramic and periapical radiographic images. Therefore, DL models are promising 
prospects for use as decision aids and decision-making tools; however, there are limitations 
with respect to their application in actual clinical practice.
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INTRODUCTION

Artificial intelligence (AI) is a fast-growing and promising approach in healthcare, for which 
increasingly many new technologies have been introduced in the past decade [1,2]. Likewise, 
the application of AI has already begun to change the paradigm of dental science, since 
AI models have shown similar or superior accuracy to that of dental professionals in most 
clinical areas, including implantology, endodontics, maxillofacial surgery, prosthodontics, 
orthodontics, and periodontics [3,4]. Many scientific papers in the field of AI-based dentistry 
have been published, and active research on clinical applications is also being conducted [5].

In the 1950s, a dental implant system (DIS) was developed based on the concept of 
“osseointegration”, and today, DISs have become a standard treatment modality for replacing 
missing teeth and rehabilitating edentulous and partially edentulous jaws [6]. In order 
to improve implant–bone interactions by increasing primary stability and accelerating 
osseointegration, new and improved DISs—featuring surface and material modifications, 
such as surface coating, coronal interfaces and flanges, tapered and thread types, and 
innovations in the apex shape—are being continuously developed and revised [7,8]. 
Accordingly, hundreds of manufacturers worldwide produce thousands of different types and 
varieties of DISs, and it is clinically and practically important to clearly identify and classify 
which DIS is present in the oral cavity for proper maintenance and management [9-11].

A subfield of AI, deep learning (DL)-based convolutional neural network algorithms have 
displayed encouraging performance in computer vision tasks and have been demonstrated 
to be highly suitable for dental image recognition and analysis [12-16]. Dental imaging 
techniques, such as panoramic and periapical radiographs, are valuable methods for 
identifying and classifying various types of DISs, but they are dependent on subjective 
human interpretation. Several recent studies have suggested that DL is highly accurate in the 
identification and classification of various types of DISs, and the classification performance 
of DL systems has been shown to be equal or superior to that of dental professionals 
specialized or non-specialized in implantology [17-25]. In this systematic review, we 
investigated the current status of DL-based identification and classification of DISs using 
dental radiographic images and evaluated the accuracy of DL through a meta-analysis.

MATERIALS AND METHODS

In this systematic review and meta-analysis, studies on the DL-based identification and 
classification of DISs were identified, and the accuracy of various types of DISs using dental 
radiographic images was investigated. The current systematic review was conducted using 
the PRISMA guidelines for reporting items and was registered with PROSPERO (registration 
number CRDCRD42022309624) [26].

Search strategy
We explored the MEDLINE/PubMed, Scopus, Embase, Cochrane, and Google Scholar 
electronic databases and identified studies published between January 2011 and March 2022, 
with no language restrictions. A comprehensive title/abstract/keyword search was conducted 
using the following search query: “artificial intelligence,” “deep learning,” “machine 
learning,” “neural networks, computer,” “dental implants,” and “dental implantation.” In 
addition, a manual search of bibliographies, citations, and related articles was performed 
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to identify additional relevant articles, and all included articles were compiled using the 
bibliographic software tool EndNote (version 20; Clarivate Analytics, Philadelphia, PA, USA).

Eligibility criteria
The eligibility assessment was conducted by one reviewer (JHL), who screened all the titles 
and abstracts. The following inclusion criteria were employed in the selection of studies: 
1) DL approaches for DIS segmentation, detection, identification, or classification; and 2) 
assessment of the accuracy of DL models using dental radiography, including panoramic, 
periapical, and bitewing radiographs, and cone-beam computed tomography (CBCT). The 
exclusion criteria were as follows: 1) letters or narrative reviews, 2) studies in which details of 
the dataset or data modality were not mentioned, and 3) studies without a clear explanation 
of the convolutional neural network-based model. Finally, duplicate data and articles were 
excluded from the analysis.

Quality assessment
The methodological quality of the selected research was evaluated independently using the 
validated Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool for risk of 
bias and assessment of applicability [27]. Any disagreement was resolved by argumentation 
or referral to a third reviewer (LJH). The QUADAS-2 checklist consists of 4 domains related to 
patient (data) selection, the index test, the reference standard, and flow and timing, as well as 
applicability concerns regarding patient (data) selection, the index test, and the reference test.

Data analysis
Two reviewers (AC and AN) independently extracted the data based on predetermined 
criteria. Any disagreement was resolved by argumentation or by referral to a third reviewer 
(JHL). Detailed descriptive characteristics (including the first author, year of publication, 
country, radiographic methods, sample size, manufacturers and brands of DISs, training/
validation and test set ratio, and DL architecture or modeling framework) were extracted, and 
a comparative evaluation of accuracy-related metrics (including accuracy, precision, recall, 
F1 score, sensitivity, specificity, positive and negative predictive values, the Youden index, 
intersection over union, and area under the receiver operating characteristic curve [AUC-
ROC]) was performed for each study. The findings of the meta-analysis are presented in forest 
plots, with point estimates and 95% confidence intervals (CIs) for each study and overall.

RESULTS

Literature search
Our search identified 1,293 records, of which 488 were screened. Subsequently, 11 studies 
were included after the title and abstract evaluation. From these screened studies, 11 full-text 
studies were assessed for eligibility, and 9 studies were included in the systematic review and 
meta-analysis [17-25]. A detailed flowchart of the current study is presented in Figure 1.

Study characteristics
The detailed characteristics of the nine studies included in this systematic review and meta-
analysis are presented in Table 1. The included studies were published between 2020 and 
2022 in 4 countries (Korea: 4 studies [20-22,25]; Japan: 3 studies [17,19,23]; Brazil: 1 study 
[24]; and France: 1 study [18]). The mean number of different types of DISs included in 
each study was 6±3 (median: 6; range: 3–12), and the mean number of radiographic images 
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Records identified through database searching (n=1,293)

Records remaining after first screening (n=488)

Dataset included for full-text (n=11)

Studies included in the systematic & meta-analysis (n=9)

Studies excluded for their low quality (n=2)

Records excluded by title and abstracts (n=477)

Duplicate records excluded first (n=805)

Databased used:
· PubMed (n=67)
· Scopus (n=50)
· Embase (n=41) 

· Cochrane (n=35)
· Google Scholar (n=1,098)
· Manual search (n=2)

Figure 1. Flowchart of study selection.

Table 1. Descriptive characteristics of the studies included in this systematic review
Author Country Radiographic 

methods
Sample 

size
Dental implant systems Training/

validation and 
test set ratio

Deep learning architecture/
modelling framework

Takahashi et al. 
(2020) [17]

Japan Panoramic images 1,282 6 (Nobel Biocare MK III, MK III Groovy, MK 
IV, MK IV Speedy Groovy, Straumann BL, GC 
Genesio Plus ST)

80:20 YOLO v3 with fine-tuning

Hadj Saïd et al. 
(2020) [18]

France Panoramic images 1,206 6 (Nobel Biocare NobelActive, Brånemark 
System, Straumann BL and TL, Zimmer 
Biomet Tapered Screw-Vent, SwissPlus)

80:20 Pretrained GoogLeNet Inception v3

Sukegawa et al. 
(2020) [19]

Japan Panoramic images 8,859 11 (Zimmer Biomet Full OSSEOTITE 4.0, Astra 
EV 4.2, Astra OsseoSpeed TX 4.0/4.5, Astra 
MicroThread 4.0/4.5, Brånemark Mk III 4.0, 
FINESIA 4.2, Replace Select Tapered 4.3, 
Nobel Replace CC 4.3, Straumann SP 4.1)

75:25 Basic CNN with 3 convolutional 
layers, VGG-16 and VGG-19 
transfer-learning models, and fine-
tuned VGG-16 and VGG-19

Lee et al. (2020) 
[20]

Korea Panoramic and 
periapical images

10,770 3 (Osstem TSIII, Dentium Superline, 
Straumann BLT)

80:20 Fine-tuned pretrained GoogLeNet 
Inception v3

Lee et al. (2020) 
[21]

Korea Panoramic and 
periapical images

11,980 6 (Astra OsseoSpeed TX, Osstem TSIII, 
Dentium Superline and implantium, 
Straumann BL and BLT)

80:20 Customized deep convolutional 
neural network algorithm with 
automated architecture

Kim et al. (2020) 
[22]

Korea Periapical images 801 4 (Brånemark Mk TiUnite, Dentium 
Implantium, Straumann BL and TL)

80:20 Pretrained SqueezeNet, Pretrained 
GoogLeNet, Pretrained ResNet-18, 
Pretrained MobileNet-v2, and 
Pretrained ResNet-50

Sukegawa et al. 
(2021) [23]

Japan Panoramic images 9,767 12 (Zimmer Biomet Full OSSEOTITE 4.0, Astra 
EV 4.2, Astra OsseoSpeed TX 4.0/4.5, Astra 
MicroThread 4.0/4.5, Brånemark Mk III 4.0, 
FINESIA 4.2, Replace Select Tapered 4.3, 
Nobel Replace CC 4.3, Straumann TL 4.1 and 
SP 4.1)

80:20 Fine-tuned pretrained ResNet-18, 
34, 50, 101, and 152

da Mata Santos et 
al. (2021) [24]

Brazil Periapical images 1,800 3 (Straumann BL, Neodent implant, SIN 
implant)

80:20 Customized deep convolutional 
neural network algorithm

Lee et al. (2022) 
[25]

Korea Panoramic images 7,325 6 (Astra OsseoSpeed TX, Osstem TSIII, 
Dentium Superline and Implantium, 
Straumann BL and BLT)

97.5:2.5 Customized deep convolutional 
neural network algorithm with 
automated architecture



included in the dataset was 5,977 ± 4,379 (median: 7, 325; range: 801–11,980). The ratio of 
the training/validation to test sets was 80:20 in 7 studies [17,18,20-24], while ratios of 72:25 
[19] and 97.5:2.5 [25] were applied in the other 2 studies. For all studies, a DL-based accuracy 
analysis was performed using unopened and individual datasets, and architectures based on 
deep convolutional neural networks were adopted, followed by customized algorithms (n=4) 
[19,23-25], GoogLeNet Inception v3 (n=3) [18,20,22], ResNet-18/34/50/101/152 (n=2) [22,23], 
VGG-16/19 (n=1) [19], and YOLO v3 (n=1) [17].

Risk of bias and accuracy outcomes
A summary diagram of the methodological quality assessment is shown in Figure 2. The risk 
of bias in each individual study was assessed in 4 domains (data selection, the index test, the 
reference standard, and flow and timing) and was high for most studies with respect to data 
selection (n=7) and reference standard (n=6). Likewise, applicability concerns, including data 
selection, the index test, and the reference standard, were also present in most studies with 
respect to the data selection (n=7) and reference test (n=6). These results were primarily due 
to the collection of biased datasets and the absence of a valid reference test independent of 
the index test. The DL-based implant identification and classification accuracy was assessed 
to be no less than 70.75% (95% CI, 65.6%–75.9%) [17] and no higher than 98.19% (95% CI, 
97.8%–98.5%) [23]. The weighted accuracy was calculated, and the pooled sample size was 
46,645, with an overall accuracy performance of 92.16% (95% CI, 90.8%–93.5%) (Figure 3). 
In a comparison between sample size and accuracy, 3 studies [18,22,24] reported an accuracy 
of more than 80% despite a small sample size (<2,000). In the rest of the studies, a positive 
correlation was observed; as sample size increased, so did accuracy (r2=0.0879) (Figure 4A). 
Out of the 9 studies included in the analysis, only 1 [23] used a 75:25 training/validation and 
test set ratio and reported 90.02% accuracy. Seven studies used a training/validation and 
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Takahashi et al. 
(2020) [17]

Studies
[reference]

Hadj Saïd et al.
(2020) [18]

Sukegawa et al.
(2020) [19]

Lee et al.
(2020) [20]

Lee et al.
(2020) [21]

Kim et al.
(2020) [22]

Sukegawa et al.
(2021) [23]

da Mata Santos et al.
(2021) [24]

Lee et al.
(2022) [25]

Risk of bias Applicability concerns

High Low High Low High Low High

High Low High Low High Low High

High Low High Low High Low High

High Low Unclear Low High Low Unclear

Unclear Low Low Low Unclear Low Low

High Low High Low High Low High

High Low High Low High Low High

High Low High Low High Low High

Unclear Low Low Low Unclear Low Low

Data
selection Index test Reference

standard
Flow and

timing
Data

selection Index test Reference
standard

Figure 2. Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool for the risk of bias and assessment of the applicability of the studies included in 
the review.
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test set ratio of 80:20, and the accuracy ranged from 70.75% to 98.15%. Another [25] used a 
97.5:2.5 training/validation and test set ratio and showed an accuracy of 77.79% (Figure 4B).

DISCUSSION

When mechanical and biological complications, such as screw loosening, fracture, or peri-
implantitis, occur in DISs, a specific identification or classification of the manufacturer, 
brand, or type of the DIS can reduce the additional efforts required from clinical practitioners 
to remove or replace the DIS and avoid the possibility of other unintended iatrogenic 
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Figure 3. Forest plot for reporting accuracy and 95% CIs, showing the largest effect size in each paper. The blue diamond shows the overall estimate. 
CI: confidence interval.
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complications [28-30]. However, many DISs placed in the jaw remain unidentified or 
unlabeled due to various internal and external environmental contingencies, such as 
the relocation or closure of dental practices or closure of dental implant manufacturers. 
Therefore, the dental radiography-based identification and classification of DISs implanted 
in the jaw have significant clinical advantages in providing appropriate professional care.

To the authors’ best knowledge, this is the first systematic review and meta-analysis of 
the DL-based classification accuracy of various types of DISs using dental radiographic 
images, and 9 studies were included in the main analysis. All studies included in this review 
reported a high accuracy (over 70%), confirming the potential applicability of DL-based AI 
technology to support clinical decision-making. Nevertheless, there are doubts and unclear 
scientific underpinnings in terms of reliability and validity regarding whether DL can be used 
appropriately in actual clinical practice. Furthermore, because the studies analyzed herein 
had a high risk of bias, the points discussed below need to be considered in the interpretation 
and analysis.

First, existing studies have not considered significant parameters (including contrast, 
intensity level, sharpness, aspect ratio, orientation, and resolution) related to the quality 
management and standardization of dental radiographic images. Four studies [20,21,24,25] 
described a quality assessment, including characteristics such as noise, haziness, blur, 
positioning errors, or distortion in the images used in the datasets, but none of the studies 
conducted validation by an oral and maxillofacial radiologist who was not involved in 
managing the dataset. In addition, the mixed use of panoramic and periapical radiographic 
images requires caution when interpreting the findings regarding comparative accuracy. Five 
studies [17-19,23,25] focused on the analysis of panoramic radiographic images, 2 studies 
[22,24] analyzed periapical radiographic images, and 2 other studies [20,21] analyzed both 
panoramic and periapical radiographic images in their datasets. In 1 study [18], the outline of 
the implant fixture was manually cropped and used as data, whereas all other studies cropped 
the images in a rectangular or square shape to define the region of interest (ROI). This non-
standardization of the ROI has a negative effect on the quality management of the dataset.

Second, although the amount of data according to class labels is a key factor in conducting 
successful DL-based analysis, most studies used a small number of radiographic images and 
a small collection of different types of DISs. Compared to DL-based medical studies that 
used tens of thousands of images as a dataset, the studies included in this review included 
between 3 to 12 different types of DISs and between 801 to 11,980 radiographic images for 
DL training and inference; these numbers are relatively low for application in actual clinical 
practice [31,32]. In addition, because most studies did not cross-validate the models and 
results [17,18,20-22,24,25], the accuracy may have been overestimated. Therefore, since 
thousands of DISs currently exist, the accuracy-related outcomes of this review are likely to 
be highly biased.

Third, because the DL algorithms used in each study included in this review have different 
architectures and structures, it is difficult to objectively and quantitatively compare the 
classification performance for the different types of DISs. In general, it is expected that 
more recently developed or modified DL algorithms would be more accurate; however, 
significant differences in accuracy according to differences between each algorithm could 
not be identified. This may indicate that although the DL model itself is a considerably 
important factor, the quantity and quality of the dataset are currently more important. Two 
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studies using different algorithms with the same dataset were included in this review, and the 
accuracy did not change significantly depending on the DL algorithm [21,25].

Fourth, it is necessary to consider 3-dimensional (3D) dental radiographic imaging. All 
9 studies utilized 2-dimensional (2D) radiographs that included only panoramic and 
periapical radiographic images as datasets for DL applications [17-25]. Several recent studies 
have developed and experimentally verified various DL algorithms for the recognition and 
localization of 3D images, such as computed tomography and magnetic resonance imaging 
[33,34]. CBCT images, which are widely used in the field of dental implantology, have an 
advantage compared to 2D images in that they have less distortion and can obtain 3D volume 
information [35]. Therefore, the development of DL models that can use 3D CBCT images as 
input and a comparative evaluation with 2D images are absolutely necessary.

Finally, in order to evaluate the applicability and feasibility of DL models as decision aids and 
decision-making tools in clinical practice, the accuracy of DL models should be compared 
with that of dental professionals. Three studies compared the accuracy between DL models 
and dental professionals, and DL showed higher classification accuracy than dental 
professionals on average with respect to parameters such as accuracy, AUC-ROC, sensitivity, 
and specificity [20,21,25]. According to a recent study, using DL as a decision-aid tool 
significantly improved the classification accuracy of dental professionals (P<0.05) [25]. In 
particular, when assisted by DL, dental professionals who specialized in implantology (mean 
accuracy: 88.56%) showed higher accuracy than the DL did alone (mean accuracy: 80.56%) 
[25]. The result of this previous study supports the conjecture that the assistance of DL and 
the knowledge of experienced dental professionals can have synergistic effects on each other.

The efficiency and robustness of DL technology critically depend on advanced DL 
architecture and a well-organized dataset. DL technology is advancing rapidly; hence, 
dental implant-related datasets are being advanced for use in actual clinical practice after 
standardization and quality improvement. Based on the limited findings of the current 
systematic review, the following conclusions were drawn. According to the studies included 
in this review, 1) the DL models developed to identify and classify DISs using panoramic and 
periapical radiographic images showed 70.75% to 98.19% accuracy for 3 to 11 different types 
of DISs, and 2) DL models can potentially be used as decision aids and decision-making 
tools; however, there are limitations concerning their practical clinical use.
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