DOI QR코드

DOI QR Code

Longitudinal reaction on conductors due to tornado wind load

  • Dingyu Yao (Department of Civil and Environmental Engineering, Western University) ;
  • Ashraf El Damatty (Department of Civil and Environmental Engineering, Western University)
  • 투고 : 2024.01.23
  • 심사 : 2024.03.04
  • 발행 : 2024.04.25

초록

The longitudinal force resulting from tornado loads on transmission line is considered a crucial factor contributing to the failure of transmission line structures during tornado events. Accurate estimation of this longitudinal force poses a challenge for structural designers. Therefore, the objective of this paper is to provide a set of charts that can be easily used to estimate the peak longitudinal forces transferred from the conductors to a tower. The critical wind field and corresponding configuration considered in this paper are previously studied and determined. The charts should account for all the conductor parameters that can affect the value of the longitudinal force. In order to achieve that, a parametric study is first conducted to assess the variation of the longitudinal forces with different conductor parameters, based on the critical tornado configuration. Results of this parametric study are used to develop the charts that can be used to calculate longitudinal forces by adopting a multi-variable line regression. The forces calculated from charts are validated by finite element analysis. An example for the usage of the charts is provided at the end of this paper.

키워드

과제정보

The authors would like to acknowledge Hydro One Ontario Company Canada and the Natural Sciences and Engineering Research Council of Canada (NSERC) for their in-kind support, their collaboration in this project, and for the financial support provided for this research.

참고문헌

  1. Aboshosha, H. and El Damatty, A. (2014), "Effective technique to analyze transmission line conductors under high intensity winds", Wind Struct., 18(3), 235-252. https://doi.org/10.12989/was.2014.18.3.235. 
  2. ASCE (2020), Guidelines for Electrical Transmission Line Structural Loading, American Society of Civil Engineers Reston, VA. 
  3. Dempsey, D. and White, H. (1996), "Winds wreak havoc on lines", Transmission Distribution World, 48, 32-37. 
  4. Ekisheva, S., Rieder, R., Norris, J., Lauby, M. and Dobson, I. (2021), "Impact of extreme weather on North American transmission system outages", In 2021 IEEE Power & Energy Society General Meeting (PESGM), 1-5. IEEE. 
  5. El Damatty, A. and Hamada, A. (2016), "F2 tornado velocity profiles critical for transmission line structures", Eng. Struct., 106, 436-449. https://doi.org/10.1016/j.engstruct.2015.10.020. 
  6. El Damatty, A., Hamada, M. and Hamada, A. (2015), "Simplified F2-Tornado load cases for transmission line structures", In 14th International Conference on Wind Engineering, Porto Alegre, Brazil. 
  7. El Damatty, A.A., Ezami, N. and Hamada, A. (2018), "Case study for behaviour of transmission line structures under full-scale flow field of Stockton, Kansas, 2005 tornado", In Electrical Transmission and Substation Structures 2018: Dedicated to Strengthening our Critical Infrastructure, 257-268. American Society of Civil Engineers Reston, https://doi.org/10.1061/9780784481837. 
  8. Fujita, T.T. (1981), "Tornadoes and downbursts in the context of generalized planetary scales", J. Atmos. Sci., 38(8), 1511-1534. https://doi.org/10.1175/15200469(1981)038<1511:TADITC>2.0.CO;2. 
  9. Grasso, L.D. and Cotton, W.R. (1995), "Numerical simulation of a tornado vortex", J. Atmos. Sci., 52, 1192-1203.  https://doi.org/10.1175/1520-0469(1995)052<1192:NSOATV>2.0.CO;2
  10. Hamada, A. and El Damatty, A.A. (2015), "Failure analysis of guyed transmission lines during F2 tornado event", Eng, Struct., 85(2), 11-25. https://doi.org/10.1016/j.engstruct.2014.11.045. 
  11. Hamada, A., El Damatty, A., Hangan, H. and Shehata, A. (2010), "Finite element modelling of transmission line structures under tornado wind loading", Wind Struct., 13, 451. https://doi.org/10.12989/was.2010.13.5.451. 
  12. Hangan, H. and Kim, H. (2008), "Swirl ratio effects on tornado vortices in relation to the Fujita scale", Wind Struct., 11(4), 291-302. https://doi.org/10.12989/was.2008.11.4.291. 
  13. Hong, H.P., Huang, A., Jiang, W.J., Tang, Q. and Jarrett, P. (2021), "Tornado wind hazard mapping and equivalent tornado design wind profile for Canada", Struct. Safety, 91, 102078. https://doi.org/10.1016/j.strusafe.2021.102078. 
  14. Ishac, M.F. and White, H.B. (1994), "Effect of tornado loads on transmission lines", In Proceedings of IEEE/PES Transmission and Distribution Conference, 521-527. IEEE. 
  15. Leslie, L. and Smith, R. (1982), "Numerical studies of tornado structure and genesis", In Intense Atmospheric Vortices, 205-213. Springer. 
  16. Madugula, M.K. (2001), Dynamic Response of Lattice Towers and Guyed Masts, ASCE Publications. 
  17. McDonald, J.R., Mehta, K.C., Smith, D.A. and Womble, J.A. (2010), "The enhanced Fujita scale: Development and implementation", In Forensic Engineering 2009: Pathology of the Built Environment, 719-728. 
  18. Narancio, G., Romanic, D., Chowdury, J.R. and Hangan, H. (2020), "Tornado hazard and exposure model for Canadian communities", In Canadian Society for Mechanical Engineering International Congress, Charlottetown, PE. https://doi.org/10.32393/csme.2020.1212. 
  19. Nima, E., Ahmed, H. and Mohamed, H. (2022), "The effect of different tornado wind fields on the response of transmission line structures", Wind Struct., 34(2), 34(2215-230), https://doi.org/10.12989/was.2022.34.2.512. 
  20. Panneer Selvam, R. and Millett, P.D. (2005), "Large eddy simulation of the tornado-structure interaction to determine structural loadings", Wind Struct., 8, 49-60. https://doi.org/10.12989/was.2005.8.1.049. 
  21. Rotunno, R. (1977) "Numerical simulation of a laboratory vortex", J. Atmos. Sci., 34, 1942-1956. https://doi.org/10.1175/1520-0469(1977)034<1942:NSOALV>2.0.CO;2 
  22. Sarkar, P., Haan, F., Gallus Jr, W., Le, K. and Wurman, J. (2005), "Velocity measurements in a laboratory tornado simulator and their comparison with numerical and full-scale data", In 37th Joint Meeting Panel on Wind and Seismic Efects. 
  23. Savory, E., Parke, G.A., Zeinoddini, M., Toy, N. and Disney, P. (2001), "Modelling of tornado and microburst-induced wind loading and failure of a lattice transmission tower", Eng. Struct., 23(4), 365-375. https://doi.org/10.1016/S0141-0296(00)00045-6. 
  24. Selvam, R.P. and Millett, P.C. (2003), "Computer modeling of tornado forces on buildings", Wind Struct., 6, 209-220. https://doi.org/10.12989/was.2003.6.3.209. 
  25. Walko, R. (1990), "Generation of tornado-like vortices in nonaxisymmetric environments", In Proceedings of the AMS 16th Conference On Severe Local Storms, 583-587. 
  26. Wilson, T. (1977), "Tornado structure interaction: A numerical simulation", Eng. Enviro. Sci., https://doi.org/10.2172/7096153. 
  27. Wilson, T. and Rotunno, R. (1986), "Numerical simulation of a laminar end-wall vortex and boundary layer", Phys. Fluids, 29, 3993-4005. https://doi.org/10.1063/1.865740. 
  28. Xia, J. (2001), "Large-eddy simulation of a three-dimensional compressible tornado vortex", West Virginia University.
  29. Yao, D.Y. and El Damatty, A. (2023), "Response of transmission line conductors under different tornadoes", Wind Struct., 37,179-189, https://doi.org/10.12989/was.2023.37.3.179. 
  30. Zhang, Y. (2006), "Status quo of wind hazard prevention for transmission lines and countermeasures", East China Electric Power, 34, 28-31.