Acknowledgement
The authors would like to acknowledge Hydro One Ontario Company Canada and the Natural Sciences and Engineering Research Council of Canada (NSERC) for their in-kind support, their collaboration in this project, and for the financial support provided for this research.
References
- Aboshosha, H. and El Damatty, A. (2014), "Effective technique to analyze transmission line conductors under high intensity winds", Wind Struct., 18(3), 235-252. https://doi.org/10.12989/was.2014.18.3.235.
- ASCE (2020), Guidelines for Electrical Transmission Line Structural Loading, American Society of Civil Engineers Reston, VA.
- Dempsey, D. and White, H. (1996), "Winds wreak havoc on lines", Transmission Distribution World, 48, 32-37.
- Ekisheva, S., Rieder, R., Norris, J., Lauby, M. and Dobson, I. (2021), "Impact of extreme weather on North American transmission system outages", In 2021 IEEE Power & Energy Society General Meeting (PESGM), 1-5. IEEE.
- El Damatty, A. and Hamada, A. (2016), "F2 tornado velocity profiles critical for transmission line structures", Eng. Struct., 106, 436-449. https://doi.org/10.1016/j.engstruct.2015.10.020.
- El Damatty, A., Hamada, M. and Hamada, A. (2015), "Simplified F2-Tornado load cases for transmission line structures", In 14th International Conference on Wind Engineering, Porto Alegre, Brazil.
- El Damatty, A.A., Ezami, N. and Hamada, A. (2018), "Case study for behaviour of transmission line structures under full-scale flow field of Stockton, Kansas, 2005 tornado", In Electrical Transmission and Substation Structures 2018: Dedicated to Strengthening our Critical Infrastructure, 257-268. American Society of Civil Engineers Reston, https://doi.org/10.1061/9780784481837.
- Fujita, T.T. (1981), "Tornadoes and downbursts in the context of generalized planetary scales", J. Atmos. Sci., 38(8), 1511-1534. https://doi.org/10.1175/15200469(1981)038<1511:TADITC>2.0.CO;2.
- Grasso, L.D. and Cotton, W.R. (1995), "Numerical simulation of a tornado vortex", J. Atmos. Sci., 52, 1192-1203. https://doi.org/10.1175/1520-0469(1995)052<1192:NSOATV>2.0.CO;2
- Hamada, A. and El Damatty, A.A. (2015), "Failure analysis of guyed transmission lines during F2 tornado event", Eng, Struct., 85(2), 11-25. https://doi.org/10.1016/j.engstruct.2014.11.045.
- Hamada, A., El Damatty, A., Hangan, H. and Shehata, A. (2010), "Finite element modelling of transmission line structures under tornado wind loading", Wind Struct., 13, 451. https://doi.org/10.12989/was.2010.13.5.451.
- Hangan, H. and Kim, H. (2008), "Swirl ratio effects on tornado vortices in relation to the Fujita scale", Wind Struct., 11(4), 291-302. https://doi.org/10.12989/was.2008.11.4.291.
- Hong, H.P., Huang, A., Jiang, W.J., Tang, Q. and Jarrett, P. (2021), "Tornado wind hazard mapping and equivalent tornado design wind profile for Canada", Struct. Safety, 91, 102078. https://doi.org/10.1016/j.strusafe.2021.102078.
- Ishac, M.F. and White, H.B. (1994), "Effect of tornado loads on transmission lines", In Proceedings of IEEE/PES Transmission and Distribution Conference, 521-527. IEEE.
- Leslie, L. and Smith, R. (1982), "Numerical studies of tornado structure and genesis", In Intense Atmospheric Vortices, 205-213. Springer.
- Madugula, M.K. (2001), Dynamic Response of Lattice Towers and Guyed Masts, ASCE Publications.
- McDonald, J.R., Mehta, K.C., Smith, D.A. and Womble, J.A. (2010), "The enhanced Fujita scale: Development and implementation", In Forensic Engineering 2009: Pathology of the Built Environment, 719-728.
- Narancio, G., Romanic, D., Chowdury, J.R. and Hangan, H. (2020), "Tornado hazard and exposure model for Canadian communities", In Canadian Society for Mechanical Engineering International Congress, Charlottetown, PE. https://doi.org/10.32393/csme.2020.1212.
- Nima, E., Ahmed, H. and Mohamed, H. (2022), "The effect of different tornado wind fields on the response of transmission line structures", Wind Struct., 34(2), 34(2215-230), https://doi.org/10.12989/was.2022.34.2.512.
- Panneer Selvam, R. and Millett, P.D. (2005), "Large eddy simulation of the tornado-structure interaction to determine structural loadings", Wind Struct., 8, 49-60. https://doi.org/10.12989/was.2005.8.1.049.
- Rotunno, R. (1977) "Numerical simulation of a laboratory vortex", J. Atmos. Sci., 34, 1942-1956. https://doi.org/10.1175/1520-0469(1977)034<1942:NSOALV>2.0.CO;2
- Sarkar, P., Haan, F., Gallus Jr, W., Le, K. and Wurman, J. (2005), "Velocity measurements in a laboratory tornado simulator and their comparison with numerical and full-scale data", In 37th Joint Meeting Panel on Wind and Seismic Efects.
- Savory, E., Parke, G.A., Zeinoddini, M., Toy, N. and Disney, P. (2001), "Modelling of tornado and microburst-induced wind loading and failure of a lattice transmission tower", Eng. Struct., 23(4), 365-375. https://doi.org/10.1016/S0141-0296(00)00045-6.
- Selvam, R.P. and Millett, P.C. (2003), "Computer modeling of tornado forces on buildings", Wind Struct., 6, 209-220. https://doi.org/10.12989/was.2003.6.3.209.
- Walko, R. (1990), "Generation of tornado-like vortices in nonaxisymmetric environments", In Proceedings of the AMS 16th Conference On Severe Local Storms, 583-587.
- Wilson, T. (1977), "Tornado structure interaction: A numerical simulation", Eng. Enviro. Sci., https://doi.org/10.2172/7096153.
- Wilson, T. and Rotunno, R. (1986), "Numerical simulation of a laminar end-wall vortex and boundary layer", Phys. Fluids, 29, 3993-4005. https://doi.org/10.1063/1.865740.
- Xia, J. (2001), "Large-eddy simulation of a three-dimensional compressible tornado vortex", West Virginia University.
- Yao, D.Y. and El Damatty, A. (2023), "Response of transmission line conductors under different tornadoes", Wind Struct., 37,179-189, https://doi.org/10.12989/was.2023.37.3.179.
- Zhang, Y. (2006), "Status quo of wind hazard prevention for transmission lines and countermeasures", East China Electric Power, 34, 28-31.