DOI QR코드

DOI QR Code

Numerical investigation of flow structures and aerodynamic pressures around a high-speed train under tornado-like winds

  • Simin Zou (School of Civil Engineering, Central South University) ;
  • Xuhui He (School of Civil Engineering, Central South University) ;
  • Teng Wu (Department of Civil, Structural and Environmental Engineering, University at Buffalo)
  • 투고 : 2023.07.02
  • 심사 : 2024.01.23
  • 발행 : 2024.04.25

초록

The funnel-shaped vortex structure of tornadoes results in a spatiotemporally varying wind velocity (speed and direction) field. However, very limited full-scale tornado data along the height and radius positions are available to identify and reliably establish a description of complex vortex structure together with the resulting aerodynamic effects on the high-speed train (HST). In this study, the improved delayed detached eddy simulation (IDDES) for flow structures and aerodynamic pressures around an HST under tornado-like winds are conducted to provide high-fidelity computational fluid dynamics (CFD) results. To demonstrate the accuracy of the numerical method adopted in this study, both field observations and wind-tunnel data are utilized to respectively validate the simulated tornado flow fields and HST aerodynamics. Then, the flow structures and aerodynamic pressures (as well as aerodynamic forces and moments) around the HST at various locations within the tornado-like vortex are comprehensively compared to highlight the importance of considering the complex spatiotemporal wind features in the HST-tornado interactions.

키워드

과제정보

The study was funded by the National Natural Science Foundations of China (Grant No. 51925808), the Tencent Foundation (Xplorer Prize 2021), the Key Project (Grant No. 2021-Key-04-2) and the China Postdoctoral Science Foundation (Grants No. 2022TQ0376).

참고문헌

  1. Andrei, S., Andrei, M.D., Hustiu, M., Cheval, S. and Antonescu, B. (2020), "Tornadoes in Romania-from Forecasting and Warning to Understanding Public's Response and Expectations", Atmosphere, 11(9), 966.
  2. Chang C.C. (1971), "Tornado wind effects on buildings and structures with laboratory simulation. In: Proceedings of the Third International Conference on Wind Effects on Buildings and Structures, 231-240. Tokyo, Japan.
  3. Chowdhury, J. and Wu, T. (2021), "Aerodynamic loading due to bon-synoptic wind systems", The Oxford Handbook of Non-Synoptic Wind Storms. Oxford University Press, Oxford, United Kingdom.
  4. Church, C., Snow, J.T., Baker, G.L. and Agee, E.M. (1979), "Characteristics of tornado-like vortices as a function of swirl ratio: A laboratory investigation", J. Atmos. Sci., 36(9), 1755-1776. https://doi.org/10.1175/1520-0469(1979)036<1755:COTLVA>2.0.CO;2
  5. Diffenbaugh, N.S., Scherer, M. and Trapp, R.J. (2013), "Robust increases in severe thunderstorm environments in response to greenhouse forcing", Proceedings of the National Academy of Sci., 110(41), 16361-16366. https://doi.org/10.1073/pnas.1307758110
  6. Feng, Y., Hao, J., Han, W., Su, Q. and Wu, T. (2022), "An optimized numerical tornado simulator and its application to transient wind-induced response of a long-span bridge", J. Wind Eng. Ind. Aerod., 227, 105072.
  7. Gairola, A. and Bitsuamlak, G. (2019), "Numerical tornado modeling for common interpretation of experimental simulators", J. Wind Eng. Ind. Aerod., 186, 32-48. https://doi.org/10.1016/j.jweia.2018.12.013
  8. Gritskevich, M.S., Garbaruk, A.V., Schutze, J. and Menter, F.R. (2012), "Development of DDES and IDDES formulations for the k-ω shear stress transport model", Flow, Turbulence Combust., 88, 431-449. https://doi.org/10.1007/s10494-011-9378-4
  9. Haan Jr, F.L., Balaramudu, V.K. and Sarkar, P.P. (2010), "Tornado-induced wind loads on a low-rise building", J. Struct. Eng., 136(1), 106-116. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000093
  10. Haan Jr, F.L., Sarkar, P.P. and Gallus, W.A., 2008. Design, construction and performance of a large tornado simulator for wind engineering applications. Engineering Structures, 30(4), 1146-1159. https://doi.org/10.1016/j.engstruct.2007.07.010
  11. Hangan, H., Refan, M., Jubayer, C., Romanic, D., Parvu, D., LoTufo, J. and Costache, A. (2017), "Novel techniques in wind engineering", J. Wind Eng. Ind. Aerod., 171, 12-33. https://doi.org/10.1016/j.jweia.2017.09.010
  12. Hao, J. and Wu, T. (2020), "Numerical analysis of a long-span bridge response to tornado-like winds", Wind Struct., 31(5), 459-472.
  13. Kosiba, K. and Wurman, J. (2010), "The three-dimensional axisymmetric wind field structure of the Spencer, South Dakota, 1998 tornado", J. Atmos. Sci., 67(9), 3074-3083. https://doi.org/10.1175/2010JAS3416.1
  14. Letchford, C., Levitz, B. and James, D. (2015), Internal Pressure Dynamics in Simulated Tornadoes. In: Structures Congress 2689-2701. Portland, Oregon, USA.
  15. Li, T., Yan, G., Yuan, F. and Chen, G. (2019), "Dynamic structural responses of long-span dome structures induced by tornadoes", J. Wind Eng. Ind. Aerod., 190, 293-308. https://doi.org/10.1016/j.jweia.2019.05.010
  16. Liu, Z. and Ishihara, T. (2016), "Study of the effects of translation and roughness on tornado-like vortices by large-eddy simulations", J. Wind Eng. Ind. Aerod., 151, 1-24. https://doi.org/10.1016/j.jweia.2016.01.006
  17. Liu, Z., Zhang, C. and Ishihara, T. (2018), "Numerical study of the wind loads on a cooling tower by a stationary tornado-like vortex through LES", J. Fluids Struct., 81, 656-672. https://doi.org/10.1016/j.jfluidstructs.2018.06.001
  18. Matsui, M. and Tamura, Y. (2009), "Influence of incident flow conditions on generation of tornado-like flow", In: Proceedings of the 11th American Conference on Wind Engineering, Puerto Rico, USA.
  19. Menter, F.R. (1994), "Two-equation eddy-viscosity turbulence models for engineering applications", AIAA J., 32(8), 1598-1605. https://doi.org/10.2514/3.12149
  20. Menter, F.R., Kuntz, M. and Langtry, R. (2003), "Ten years of industrial experience with the SST turbulence model", Turbulence, Heat Mass Transfer, 4(1), 625-632.
  21. Niu, J.Q., Liang, X.F., Zhou, D. and Wang, Y.M. (2018), "Numerical investigation of the aerodynamic characteristics of a train subjected to different ground conditions", Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232(10), 2371-2384. https://doi.org/10.1177/0954409718770345
  22. Obara, K., Krajnovic, S., Minelli, G., Basara, B., Okura, N. and Suzuki, M. (2019), "Large eddy simulation of a tornado flow around a train", In: Direct and Large-Eddy Simulation XI, 587-593. Springer International Publishing.
  23. Rossetti, M.A. (2007), Analysis of Weather Events on US Railroads. Volpe National Transportation Systems Center, Cambridge, MA.
  24. Sengupta, A., Haan, F.L., Sarkar, P.P. and Balaramudu, V. (2008), "Transient loads on buildings in microburst and tornado winds", J. Wind Eng. Ind. Aerod., 96(10-11), 2173-2187. https://doi.org/10.1016/j.jweia.2008.02.050
  25. Shur, M.L., Spalart, P.R., Strelets, M.K. and Travin, A.K. (2008), "A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities", Int. J. Heat Fluid Flow, 29(6), 1638-1649. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001
  26. Spalart, P.R. (2009), "Detached-eddy simulation", Annual Rev. Fluid Mech., 41, 181-202. https://doi.org/10.1146/annurev.fluid.010908.165130
  27. Suzuki M. and Okura N. (2016), "Study of aerodynamic forces acting on a train using a tornado simulator", Mech. Eng. Lett., 2, 16-00505.
  28. Tamura Y. (2009), "Wind induced damage to buildings and disaster risk reduction", In: Proceedings of the APCWE-VII, Taipei, Taiwan.
  29. Tian H. (2007), Train Aerodynamics. China Railway Press, Beijing, China.
  30. Travin, A., Shur, M., Spalart, P.R. and Strelets, M. (2006), "Improvement of delayed detached-eddy simulation for LES with wall modelling", Proceedings (CDROM) of the European Conference on Computational Fluid Dynamics ECCOMAS CFD, Egmond aan Zee, The Netherlands.
  31. Wen, Y.K. (1975), "Dynamic tornadic wind loads on tall buildings", J. Struct. Div., 101(1), 169-185. https://doi.org/10.1061/JSDEAG.0003967
  32. Wood, V.T. and Brown, R.A. (2011), "Simulated tornadic vortex signatures of tornado-like vortices having one-and two-celled structures", J. Appl. Meteorol. Climatology, 50(11), 2338-2342. https://doi.org/10.1175/JAMC-D-11-0118.1
  33. Wurman, J. (2002), "The multiple-vortex structure of a tornado", Weather Forecasting, 17(3), 473-505. https://doi.org/10.1175/1520-0434(2002)017<0473:TMVSOA>2.0.CO;2
  34. Yang, M., Du, J., Li, Z., Huang, S. and Zhou, D. (2017), "Moving model test of high-speed train aerodynamic drag based on stagnation pressure measurements", PLoS One, 12(1), e0169471.
  35. Yuan, F., Yan, G., Honerkamp, R., Isaac, K.M., Zhao, M. and Mao, X. (2019), "Numerical simulation of laboratory tornado simulator that can produce translating tornado-like wind flow", J. Wind Eng. Ind. Aerod., 190, 200-217. https://doi.org/10.1016/j.jweia.2019.05.001
  36. Zhang, L., Yang, M.Z. and Liang, X.F. (2018), "Experimental study on the effect of wind angles on pressure distribution of train streamlined zone and train aerodynamic forces", J. Wind Eng. Ind. Aerod., 174, 330-343. https://doi.org/10.1016/j.jweia.2018.01.024