Acknowledgement
The study was funded by the National Natural Science Foundations of China (Grant No. 51925808), the Tencent Foundation (Xplorer Prize 2021), the Key Project (Grant No. 2021-Key-04-2) and the China Postdoctoral Science Foundation (Grants No. 2022TQ0376).
References
- Andrei, S., Andrei, M.D., Hustiu, M., Cheval, S. and Antonescu, B. (2020), "Tornadoes in Romania-from Forecasting and Warning to Understanding Public's Response and Expectations", Atmosphere, 11(9), 966.
- Chang C.C. (1971), "Tornado wind effects on buildings and structures with laboratory simulation. In: Proceedings of the Third International Conference on Wind Effects on Buildings and Structures, 231-240. Tokyo, Japan.
- Chowdhury, J. and Wu, T. (2021), "Aerodynamic loading due to bon-synoptic wind systems", The Oxford Handbook of Non-Synoptic Wind Storms. Oxford University Press, Oxford, United Kingdom.
- Church, C., Snow, J.T., Baker, G.L. and Agee, E.M. (1979), "Characteristics of tornado-like vortices as a function of swirl ratio: A laboratory investigation", J. Atmos. Sci., 36(9), 1755-1776. https://doi.org/10.1175/1520-0469(1979)036<1755:COTLVA>2.0.CO;2
- Diffenbaugh, N.S., Scherer, M. and Trapp, R.J. (2013), "Robust increases in severe thunderstorm environments in response to greenhouse forcing", Proceedings of the National Academy of Sci., 110(41), 16361-16366. https://doi.org/10.1073/pnas.1307758110
- Feng, Y., Hao, J., Han, W., Su, Q. and Wu, T. (2022), "An optimized numerical tornado simulator and its application to transient wind-induced response of a long-span bridge", J. Wind Eng. Ind. Aerod., 227, 105072.
- Gairola, A. and Bitsuamlak, G. (2019), "Numerical tornado modeling for common interpretation of experimental simulators", J. Wind Eng. Ind. Aerod., 186, 32-48. https://doi.org/10.1016/j.jweia.2018.12.013
- Gritskevich, M.S., Garbaruk, A.V., Schutze, J. and Menter, F.R. (2012), "Development of DDES and IDDES formulations for the k-ω shear stress transport model", Flow, Turbulence Combust., 88, 431-449. https://doi.org/10.1007/s10494-011-9378-4
- Haan Jr, F.L., Balaramudu, V.K. and Sarkar, P.P. (2010), "Tornado-induced wind loads on a low-rise building", J. Struct. Eng., 136(1), 106-116. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000093
- Haan Jr, F.L., Sarkar, P.P. and Gallus, W.A., 2008. Design, construction and performance of a large tornado simulator for wind engineering applications. Engineering Structures, 30(4), 1146-1159. https://doi.org/10.1016/j.engstruct.2007.07.010
- Hangan, H., Refan, M., Jubayer, C., Romanic, D., Parvu, D., LoTufo, J. and Costache, A. (2017), "Novel techniques in wind engineering", J. Wind Eng. Ind. Aerod., 171, 12-33. https://doi.org/10.1016/j.jweia.2017.09.010
- Hao, J. and Wu, T. (2020), "Numerical analysis of a long-span bridge response to tornado-like winds", Wind Struct., 31(5), 459-472.
- Kosiba, K. and Wurman, J. (2010), "The three-dimensional axisymmetric wind field structure of the Spencer, South Dakota, 1998 tornado", J. Atmos. Sci., 67(9), 3074-3083. https://doi.org/10.1175/2010JAS3416.1
- Letchford, C., Levitz, B. and James, D. (2015), Internal Pressure Dynamics in Simulated Tornadoes. In: Structures Congress 2689-2701. Portland, Oregon, USA.
- Li, T., Yan, G., Yuan, F. and Chen, G. (2019), "Dynamic structural responses of long-span dome structures induced by tornadoes", J. Wind Eng. Ind. Aerod., 190, 293-308. https://doi.org/10.1016/j.jweia.2019.05.010
- Liu, Z. and Ishihara, T. (2016), "Study of the effects of translation and roughness on tornado-like vortices by large-eddy simulations", J. Wind Eng. Ind. Aerod., 151, 1-24. https://doi.org/10.1016/j.jweia.2016.01.006
- Liu, Z., Zhang, C. and Ishihara, T. (2018), "Numerical study of the wind loads on a cooling tower by a stationary tornado-like vortex through LES", J. Fluids Struct., 81, 656-672. https://doi.org/10.1016/j.jfluidstructs.2018.06.001
- Matsui, M. and Tamura, Y. (2009), "Influence of incident flow conditions on generation of tornado-like flow", In: Proceedings of the 11th American Conference on Wind Engineering, Puerto Rico, USA.
- Menter, F.R. (1994), "Two-equation eddy-viscosity turbulence models for engineering applications", AIAA J., 32(8), 1598-1605. https://doi.org/10.2514/3.12149
- Menter, F.R., Kuntz, M. and Langtry, R. (2003), "Ten years of industrial experience with the SST turbulence model", Turbulence, Heat Mass Transfer, 4(1), 625-632.
- Niu, J.Q., Liang, X.F., Zhou, D. and Wang, Y.M. (2018), "Numerical investigation of the aerodynamic characteristics of a train subjected to different ground conditions", Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232(10), 2371-2384. https://doi.org/10.1177/0954409718770345
- Obara, K., Krajnovic, S., Minelli, G., Basara, B., Okura, N. and Suzuki, M. (2019), "Large eddy simulation of a tornado flow around a train", In: Direct and Large-Eddy Simulation XI, 587-593. Springer International Publishing.
- Rossetti, M.A. (2007), Analysis of Weather Events on US Railroads. Volpe National Transportation Systems Center, Cambridge, MA.
- Sengupta, A., Haan, F.L., Sarkar, P.P. and Balaramudu, V. (2008), "Transient loads on buildings in microburst and tornado winds", J. Wind Eng. Ind. Aerod., 96(10-11), 2173-2187. https://doi.org/10.1016/j.jweia.2008.02.050
- Shur, M.L., Spalart, P.R., Strelets, M.K. and Travin, A.K. (2008), "A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities", Int. J. Heat Fluid Flow, 29(6), 1638-1649. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001
- Spalart, P.R. (2009), "Detached-eddy simulation", Annual Rev. Fluid Mech., 41, 181-202. https://doi.org/10.1146/annurev.fluid.010908.165130
- Suzuki M. and Okura N. (2016), "Study of aerodynamic forces acting on a train using a tornado simulator", Mech. Eng. Lett., 2, 16-00505.
- Tamura Y. (2009), "Wind induced damage to buildings and disaster risk reduction", In: Proceedings of the APCWE-VII, Taipei, Taiwan.
- Tian H. (2007), Train Aerodynamics. China Railway Press, Beijing, China.
- Travin, A., Shur, M., Spalart, P.R. and Strelets, M. (2006), "Improvement of delayed detached-eddy simulation for LES with wall modelling", Proceedings (CDROM) of the European Conference on Computational Fluid Dynamics ECCOMAS CFD, Egmond aan Zee, The Netherlands.
- Wen, Y.K. (1975), "Dynamic tornadic wind loads on tall buildings", J. Struct. Div., 101(1), 169-185. https://doi.org/10.1061/JSDEAG.0003967
- Wood, V.T. and Brown, R.A. (2011), "Simulated tornadic vortex signatures of tornado-like vortices having one-and two-celled structures", J. Appl. Meteorol. Climatology, 50(11), 2338-2342. https://doi.org/10.1175/JAMC-D-11-0118.1
- Wurman, J. (2002), "The multiple-vortex structure of a tornado", Weather Forecasting, 17(3), 473-505. https://doi.org/10.1175/1520-0434(2002)017<0473:TMVSOA>2.0.CO;2
- Yang, M., Du, J., Li, Z., Huang, S. and Zhou, D. (2017), "Moving model test of high-speed train aerodynamic drag based on stagnation pressure measurements", PLoS One, 12(1), e0169471.
- Yuan, F., Yan, G., Honerkamp, R., Isaac, K.M., Zhao, M. and Mao, X. (2019), "Numerical simulation of laboratory tornado simulator that can produce translating tornado-like wind flow", J. Wind Eng. Ind. Aerod., 190, 200-217. https://doi.org/10.1016/j.jweia.2019.05.001
- Zhang, L., Yang, M.Z. and Liang, X.F. (2018), "Experimental study on the effect of wind angles on pressure distribution of train streamlined zone and train aerodynamic forces", J. Wind Eng. Ind. Aerod., 174, 330-343. https://doi.org/10.1016/j.jweia.2018.01.024