DOI QR코드

DOI QR Code

Deriving vertical velocity in tornadic wind field from radar-measured data and improving tornado simulation by including vertical velocity at velocity inlet

  • Yi Zhao (Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology) ;
  • Guirong Yan (Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology) ;
  • Ruoqiang Feng (The Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University) ;
  • Zhongdong Duan (School of Civil and Environmental Engineering, Harbin Institute of Technology) ;
  • Houjun Kang (College of Civil Engineering and Architecture, Guangxi University)
  • Received : 2023.05.30
  • Accepted : 2023.09.20
  • Published : 2024.04.25

Abstract

In a tornadic wind field, the vertical velocity component in certain regions of tornadoes can be significant, forming one of the major differences between tornadic wind fields and synoptic straight-line wind fields. To better understand the wind characteristics of tornadoes and properly estimate the action of tornadoes on civil structures, it is important to ensure that all the attributes of tornadoes are captured. Although Doppler radars have been used to measure tornadic wind fields, they can only directly provide information on quasi-horizontal velocity. Therefore, lots of numerical simulations and experimental tests in previous research ignored the vertical velocity at the boundary. However, the influence of vertical velocity in tornadic wind fields is not evaluated. To address this research gap, this study is to use an approach to derive the vertical velocity component based on the horizontal velocities extracted from the radar-measured data by mass continuity. This approach will be illustrated by using the radar-measured data of Spencer Tornado as an example. The vertical velocity component is included in the initial inflow condition in the CFD simulation to assess the influence of including vertical velocity in the initial inflow condition on the entire tornadic wind field.

Keywords

Acknowledgement

The authors greatly appreciate the financial support from National Science Foundation, through the project, "Damage and Instability Detection of Civil Large-scale Space Structures under Operational and Multi-hazard Environments" (Award No.: 1455709), and two other projects (#1940192 and #2044013). The authors also greatly appreciate the financial support from the VORTEX-SE Program within the NOAA/OAR Office of Weather and Air Quality under Grant No. NA20OAR4590452.

References

  1. Anderson, W. and Meneveau, C. (2010), "A large-eddy simulation model for boundary-layer flow over surfaces with horizontally resolved but vertically unresolved roughness elements", Bound. Lay. Meteorol., 137(3), 397-415. https://doi.org/10.1007/s10546-010-9537-5.
  2. Anderson, W.K. and Bonhaus, D.L. (1994), "An implicit upwind algorithm for computing turbulent flows on unstructured grids0", Comput. Fluids, 23(1), 1-21. https://doi.org/10.1016/0045-7930(94)90023-X.
  3. Barth, T. and Jespersen, D. (1989), "The design and application of upwind schemes on unstructured meshes", In 27th Aerospace Sciences Meeting, 366. https://doi.org/10.2514/6.1989-366.
  4. Bellamy, J.C. (1949), "Objective calculations of divergence, vertical velocity and vorticity", Bull. Amer. Meteorol. Soc., 30(2), 45-49. https://doi.org/10.1175/1520-0477-30.2.45.
  5. Gallus Jr, W.A., Haan Jr, F.L., Sarkar, P.P., Le, K. and Wurman, J. (2006), "Comparison of numerical model and laboratory simulator tornado wind fields with radar observations of the Spencer, South Dakota tornado", In Symp. on the Challenges of Severe Convective Storms, 86 th AMS Annual Meeting, Atlanta, GA, American Meteorological Society.
  6. Grazulis, T.P. and Grazulis. T.P. (1993), Significant Tornadoes, 825. St. Johnsbury, VT: Environmental Films. 
  7. Haan Jr, F.L., Balaramudu, V.K. and Sarkar, P.P. (2010), "Tornado-induced wind loads on a low-rise building", J. Struct. Eng., 136(1), 106-116. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000093.
  8. Hangan, H. and Kim, J.D. (2008), "Swirl ratio effects on tornado vortices in relation to the Fujita scale", Wind Struct., 11(4), 291-302. https://doi.org/10.12989/was.2008.11.4.291.
  9. Koliou, M., Masoomi, H. and van de Lindt, J.W. (2017), "Performance assessment of tilt-up big-box buildings subjected to extreme hazards: Tornadoes and earthquakes", J. Perform. Construct. Facilities, 31(5), 04017060. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001059.
  10. Kosiba, K. and Wurman, J. (2010), "The three-dimensional axisymmetric wind field structure of the Spencer, South Dakota, 1998 tornado", J. Atmos. Sci., 67(9), 3074-3083. https://doi.org/10.1175/2010JAS3416.1.
  11. Kosiba, K.A., Trapp, R.J. and Wurman, J. (2008), "An analysis of the axisymmetric three-dimensional low level wind field in a tornado using mobile radar observations", Geophys. Res. Lett., 35(5). https://doi.org/10.1029/2007GL031851.
  12. Kuai, L., Haan Jr, F.L., Gallus Jr, W.A. and Sarkar, P.P. (2008), "CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements", Wind Struct., 11(2), 75-96. https://doi.org/10.12989/was.2008.11.2.075.
  13. Kun, Z., Guoqing, L., Wenzhong, G., Renqing, D. and Takeda, T. (2003), "Retrieval of single-Doppler radar wind field by nonlinear approximation", Adv. Atmos. Sci., 20(2), 195-204. https://doi.org/10.1007/s00376-003-0004-9
  14. Laroche, S. and Zawadzki, I. (1994), "A variational analysis method for retrieval of three-dimensional wind field from single-Doppler radar data", J. Atmos. Sci., 51(18), 2664-2682. https://doi.org/10.1175/1520-0469(1994)051<2664:AVAMFR>2.0.CO;2
  15. Lee, J.L. and Browning, G.L. (1994), "Analysis of errors in the horizontal divergence derived from high temporal resolution of the wind", Month. Weather Review, 122(5), 851-863. https://doi.org/10.1175/1520-0493(1994)122<0851:AOEITH>2.0.CO;2.
  16. Lee, W.C. and Wurman, J. (2005), "Diagnosed three-dimensional axisymmetric structure of the Mulhall tornado on May 3 1999", J. Atmos. Sci., 62(7), 2373-2393. https://doi.org/10.1175/JAS3489.1.
  17. Lee, W.C., Jou, B.J.D., Chang, P.L. and Deng, S.M. (1999), "Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part I: Interpretation of Doppler velocity patterns and the GBVTD technique", Month. Weather Rev., 127(10), 2419-2439. https://doi.org/10.1175/1520-0493(1999)127<2419:TCKSRF>2.0.CO;2.
  18. Leonard, B.P. (1991), "The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection", Comput. Meth. Appl. Mech. Eng., 88(1), 17-74. https://doi.org/10.1016/0045-7825(91)90232-U.
  19. Li, T., Yan, G., Yuan, F. and Chen, G. (2019), "Dynamic structural responses of long-span dome structures induced by tornadoes", J. Wind Eng. Ind. Aerod., 190, 293-308. https://doi.org/10.1016/j.jweia.2019.05.010.
  20. Miller, L.J. (1978), "Horizontal airflow and precipitation fallspeed in a convective system from triple Doppler radar measurements", Preprints, 18th Conf. on Radar Meteorology, Atlanta, GA, Amer. Meteor. Soc., 207-211.
  21. Nicoud, F. and Ducros, F. (1999), "ubgrid-scale stress modelling based on the square of the velocity gradient tensor", Flow, Turbulence Combustion, 62(3), 183-200. https://doi.org/10.1023/A:1009995426001.
  22. Potvin, C.K., Shapiro, A. and Xue, M. (2012), "Impact of a vertical vorticity constraint in variational dual-Doppler wind analysis: Tests with real and simulated supercell data", J. Atmos. Oceanic Technol., 29(1), 32-49. https://doi.org/10.1175/JTECH-D-11-00019.1
  23. Rasmussen, E.N., Straka, J.M., Davies-Jones, R., Doswell III, C.A., Carr, F.H., Eilts, M.D. and MacGorman, D.R. (1994), "Verification of the origins of rotation in tornadoes experiment: VORTEX", Bull. Amer. Meteorol. Soc., 75(6), 995-1006. https://doi.org/10.1175/1520-0477(1994)075<0995:VOTOOR>2.0.CO;2
  24. Ray, P.S., Wagner, K.K., Johnson, K.W., Stephens, J.J., Bumgarner, W.C. and Mueller, E.A. (1978), "Triple-Doppler observations of a convective storm", J. Appl. Meteorol. Climatology, 17(8), 1201-1212. https://doi.org/10.1175/1520-0450(1978)017<1201:TDOOAC>2.0.CO;2
  25. Refan, M. and Hangan, H. (2018), "Near surface experimental exploration of tornado vortices", J. Wind Eng. Ind. Aerod., 175, 120-135. https://doi.org/10.1016/j.jweia.2018.01.042.
  26. Sarkar, P., Haan, F., Gallus Jr, W., Le, K. and Wurman, J. (2005), "Velocity measurements in a laboratory tornado simulator and their comparison with numerical and full-scale data", In 37th Joint Meeting Panel on Wind and Seismic Effects.
  27. Sengupta, A., Haan, F.L., Sarkar, P.P. and Balaramudu, V. (2008), "Transient loads on buildings in microburst and tornado winds", J. Wind Eng. Ind. Aerod., 96(10-11), 2173-2187. https://doi.org/10.1016/j.jweia.2008.02.050.
  28. Shapiro, A., Robinson, P., Wurman, J. and Gao, J. (2003), "Single-Doppler velocity retrieval with rapid-scan radar data", J. Atmospheric and Oceanic Technology, 20(12), 1758-1775. https://doi.org/10.1175/1520-0426(2003)020<1758:SVRWRR>2.0.CO;2
  29. Van Doormaal, J.P. and Raithby, G.D. (1984), "Enhancements of the SIMPLE method for predicting incompressible fluid flows", Numer. Heat Transfer, 7(2), 147-163. https://doi.org/10.1080/01495728408961817.
  30. Wakimoto, R.M. and Martiner, B.E. (1992), "Observations of a Colorado Tornado. Part II: Combined photogrammetric and Doppler radar analysis", Mon. Wea. Rev., 120, 522-533. https://doi.org/10.1175/1520-0493(1992)120<0522:OOACTP>2.0.CO;2
  31. Wakimoto, R.M., Lee, W.C., Bluestein, H.B., Liu, C.H. and Hildebrand, P.H. (1996), "ELDORA observations during VORTEX 95", Bull. Amer. Meteorol. Soc., 77(7), 1465-1482. https://doi.org/10.1175/1520-0477(1996)077<1465:EODV>2.0.CO;2
  32. Wurman, J. (2001), "The DOW mobile multiple Doppler network", 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc (pp. 95-97).
  33. Wurman, J., & Kosiba, K. (2013), "Finescale radar observations of tornado and mesocyclone structures", Weather Forecasting, 28(5), 1157-1174. https://doi.org/10.1175/WAF-D-12-00127.1.
  34. Wurman, J., Kosiba, K., Robinson, P. and Marshall, T. (2014), "The role of multiple-vortex tornado structure in causing storm researcher fatalities", Bull. Amer. Meteorol. Soc., 95(1), 31-45. https://doi.org/10.1175/BAMS-D-13-00221.1.
  35. Wurman, J., Straka, J., Rasmussen, E., Randall, M. and Zahrai, A. (1997), "Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar", J. Atmos. Oceanic Technol., 14(6), 1502-1512. https://doi.org/10.1175/1520-0426(1997)014<1502:DADOAP>2.0.CO;2
  36. Zhao Y., Yan G. and Feng, R. (2021), "Wind flow characteristics of multi-vortex tornadoes", Nat. Haz. Rev., accepted. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000462.