참고문헌
- S. I. Amari and H. Nagaoka, Methods of information geometry, Vol. 191, AMS, 2000.
- H. Baltazar, On critical point equation of compact manifolds with zero radial Weyl curvature, Geom. Dedicata 202 (2019), 337-355. https://doi.org/10.1007/s10711-018-0417-3
- H. Baltazar and E. Ribeiro Jr., Remarks on critical metrics of the scalar curvature and volume functionals on compact manifolds with boundary, Pacific J. Math. 297 (2018), no. 1, 29-45. https://doi.org/10.2140/pjm.2018.297.29
- A. Barros and E. Ribeiro Jr., Critical point equation on four-dimensional compact manifolds, Math. Nachr. 287 (2014), no. 14-15, 1618-1623. https://doi.org/10.1002/mana.201300149
- R. Batista, R. Diogenes, M. Ranieri, and E. Ribeiro, Critical metrics of the volume functional on compact three-manifolds with smooth boundary, J. Geom. Anal. 27 (2017), no. 2, 1530-1547. https://doi.org/10.1007/s12220-016-9730-y
- A. L. Besse, Einstein Manifolds, Springer, Berlin, 2008.
- H. Furuhata, Hypersurfaces in statistical manifolds, Differential Geom. Appl. 27 (2009), no. 3, 420-429. https://doi.org/10.1016/j.difgeo.2008.10.019
- B. L. Neto, A note on critical point metrics of the total scalar curvature functional, J. Math. Anal. Appl. 424 (2015), no. 2, 1544-1548. https://doi.org/10.1016/j.jmaa.2014.11.040
- B. Opozda, Bochner's technique for statistical structures, Ann. Global Anal. Geom. 48 (2015), no. 4, 357-395. https://doi.org/10.1007/s10455-015-9475-z
- B. Opozda, Curvature bounded conjugate symmetric statistical structures with complete metric, Ann. Global Anal. Geom. 55 (2019), no. 4, 687-702. https://doi.org/10.1007/s10455-019-09647-y
- A. S. Santos, Critical metrics of the scalar curvature functional satisfying a vanishing condition on the Weyl tensor, Arch. Math. (Basel) 109 (2017), no. 1, 91-100. https://doi.org/10.1007/s00013-017-1030-7
- M. A. Sedghi and H. Ghahremani-Gol, A note on critical point equations on three-dimensional cosymplectic manifolds, Khayyam J. Math. 8 (2022), no. 1, 1-6.