DOI QR코드

DOI QR Code

SOME PROPERTIES OF CRITICAL POINT EQUATIONS METRICS ON THE STATISTICAL MANIFOLDS

  • 투고 : 2023.07.31
  • 심사 : 2023.11.03
  • 발행 : 2024.04.30

초록

The aim of this paper is to investigate some properties of the critical points equations on the statistical manifolds. We obtain some geometric equations on the statistical manifolds which admit critical point equations. We give a relation only between potential function and difference tensor for a CPE metric on the statistical manifolds to be Einstein.

키워드

참고문헌

  1. S. I. Amari and H. Nagaoka, Methods of information geometry, Vol. 191, AMS, 2000.
  2. H. Baltazar, On critical point equation of compact manifolds with zero radial Weyl curvature, Geom. Dedicata 202 (2019), 337-355. https://doi.org/10.1007/s10711-018-0417-3
  3. H. Baltazar and E. Ribeiro Jr., Remarks on critical metrics of the scalar curvature and volume functionals on compact manifolds with boundary, Pacific J. Math. 297 (2018), no. 1, 29-45. https://doi.org/10.2140/pjm.2018.297.29
  4. A. Barros and E. Ribeiro Jr., Critical point equation on four-dimensional compact manifolds, Math. Nachr. 287 (2014), no. 14-15, 1618-1623. https://doi.org/10.1002/mana.201300149
  5. R. Batista, R. Diogenes, M. Ranieri, and E. Ribeiro, Critical metrics of the volume functional on compact three-manifolds with smooth boundary, J. Geom. Anal. 27 (2017), no. 2, 1530-1547. https://doi.org/10.1007/s12220-016-9730-y
  6. A. L. Besse, Einstein Manifolds, Springer, Berlin, 2008.
  7. H. Furuhata, Hypersurfaces in statistical manifolds, Differential Geom. Appl. 27 (2009), no. 3, 420-429. https://doi.org/10.1016/j.difgeo.2008.10.019
  8. B. L. Neto, A note on critical point metrics of the total scalar curvature functional, J. Math. Anal. Appl. 424 (2015), no. 2, 1544-1548. https://doi.org/10.1016/j.jmaa.2014.11.040
  9. B. Opozda, Bochner's technique for statistical structures, Ann. Global Anal. Geom. 48 (2015), no. 4, 357-395. https://doi.org/10.1007/s10455-015-9475-z
  10. B. Opozda, Curvature bounded conjugate symmetric statistical structures with complete metric, Ann. Global Anal. Geom. 55 (2019), no. 4, 687-702. https://doi.org/10.1007/s10455-019-09647-y
  11. A. S. Santos, Critical metrics of the scalar curvature functional satisfying a vanishing condition on the Weyl tensor, Arch. Math. (Basel) 109 (2017), no. 1, 91-100. https://doi.org/10.1007/s00013-017-1030-7
  12. M. A. Sedghi and H. Ghahremani-Gol, A note on critical point equations on three-dimensional cosymplectic manifolds, Khayyam J. Math. 8 (2022), no. 1, 1-6.