DOI QR코드

DOI QR Code

Simulation of dam inflow using a square grid and physically based distributed model

격자 기반의 물리적 분포형 모형을 이용한 댐 유입량 모의

  • Choi, Yun Seok (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Choi, Si Jung (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 최윤석 (한국건설기술연구원 수자원하천연구본부) ;
  • 최시중 (한국건설기술연구원 수자원하천연구본부)
  • Received : 2024.03.27
  • Accepted : 2024.04.12
  • Published : 2024.04.30

Abstract

The purpose of this study is to evaluate the applicability of the GRM (Grid based rainfall-Runoff Model) to the continuous simulation by simulating the dam inflow. The GRM was previously developed for the simulation of rainfall-runoff events but has recently been improved to enable continuous simulation. The target watersheds are Chungju dam, Andong dam, Yongdam dam, and Sumjingang dam basins, and runoff models were constructed with the spatial resolution of 500 m × 500 m. The simulation period is 21 years (2001 to 2021). The simulation results were evaluated over the 17 year period (2005 to 2021), and were divided into three data periods: total duration, wet season (June to September), and dry season (October to May), and compared with the observed daily inflow of each dam. Nash-Sutcliffe efficiency (NSE), Kling-Gupta efficiency (KGE), correlation coefficient (CC), and total volume error (VE) were used to evaluate the fitness of the simulation results. As a result of evaluating the simulated dam inflow, the observed data could be well reproduced in the total duration and wet season, and the dry season also showed good simulation results considering the uncertainty of low-flow data. As a result of the study, it was found that the continuous simulation technique of the GRM model was properly implemented and the model was sufficiently applicable to the simulation of dam inflow in this study.

본 연구의 목적은 물리적 분포형 유출 모형인 GRM (Grid based rainfall-Runoff Model)을 이용하여 댐 유입량을 모의함으로써 연속형 모의에 대한 GRM 모형의 적용성을 평가하는 것이다. GRM 모형은 기존에 강우-유출 사상의 모의를 위해서 개발되었으나, 최근에 연속형 모의가 가능하도록 개선되었다. 대상 유역은 충주댐 유역, 안동댐 유역, 용담댐 유역, 섬진강댐 유역이며, 500 m × 500 m의 공간 해상도로 유출 모형을 구축하였다. 모의 기간은 21년(2001년~2021년)이다. 모의결과의 평가는 17년 기간(2005년~2021년)에 대해서 수행하였으며, 17년 전체 자료(total duration), 풍수기(6월~9월, wet season), 갈수기(10월~5월, dry season)의 3개 자료 기간으로 구분하고, 각 댐의 관측된 일유입량과 비교하였다. 모의결과의 적합도 평가는 Nash-Sutcliffe efficiency 계수(NSE), Kling-Gupta efficiency 계수(KGE), 상관계수(CC), 총용적 오차(VE)를 사용하였다. 모의된 댐 유입량의 평가결과 total duration과 wet season에서 관측자료를 잘 재현할 수 있었으며, dry season에서도 저유량 자료의 불확실성을 고려할 때 양호한 모의결과를 나타내었다. 연구결과 GRM 모형의 연속형 모의기법은 적절히 구현된 것으로 판단되었으며, 본 연구의 댐 유입량 모의에 충분히 적용성이 있는 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국건설기술연구원 연구 운영비 지원사업(주요사업)(과제번호 20240128-001, 기후 위기 대응 물문제 해결형 이슈 발굴 및 미래선도 기술 개발)과 환경부의 재원으로 한국환경산업기술원의 가뭄대응 물관리 혁신기술개발사업의 지원을 받아 연구되었습니다(과제번호 2022003610004).

References

  1. Anderson, E.A. (1976). A point energy and mass balance model of snow cover. NOAA Technical Report NWS 19, U.S. Dept. of Commerce, National Weather Service, MD, U.S., pp. 42-137. 
  2. Blaney, H.F., and Criddle, W.D. (1950). "Determining water requirements in irrigated area from climatological irrigation data." US Department of Agriculture, Soil Conservation Service, Technical Paper, 96, p. 48. 
  3. Cho, H.K., and Kim, S.M. (2019). "Estimation of the Hapcheon Dam inflow using HSPF model." Journal of the Korean Society of Agricultural Engineers, Vol. 61, No. 5, pp. 69-77. 
  4. Choi, C.K., Kim, T., and Choi, Y.S. (2022). "A study on prediction method for flood risk using LENS and flood risk matrix." Journal of Korea Water Resources Association, Vol. 55, No. 9, pp. 657-668.  https://doi.org/10.3741/JKWRA.2022.55.9.657
  5. Choi, Y.S., and Kim, K.T. (2024). Grid based rainfall-runoff model User's manual. Korea Institute of Civil Engineering and Building Technology. pp. 1-42. 
  6. Choi, Y.S., Choi, C.K., Kim, H.S., Kim, K.T., and Kim, S.J. (2015). "Multi-site calibration using a grid-based event rainfall-runoff model: a case study of the upstream areas of the Nakdong River basin in Korea." Hydrological Processes, Vol. 29, pp. 2089-2099.  https://doi.org/10.1002/hyp.10355
  7. Choi, Y.S., Kim, K.T., and Lee, J.H. (2008). "Development of grid based distributed rainfall-runoff model with finite volume method." Journal of Korea Water Resources Association, Vol. 41, No. 9, pp. 895-905.  https://doi.org/10.3741/JKWRA.2008.41.9.895
  8. Ellenburg, W.L., Cruise, J.F., and Singh, V.P. (2018). "The role of evapotranspiration in streamflow modeling - An analysis using entropy." Journal of Hydrology, Vol. 567, pp. 290-304.  https://doi.org/10.1016/j.jhydrol.2018.09.048
  9. Feng, M., Zhang, W., Zhang, S., Sun, Z., Li, Y., Huang, Y., Wang, W., Qi, P., Zou, Y., and Jiang, M. (2022). "The role of snowmelt discharge to runoff of an alpine watershed: Evidence from water stable isotopes." Journal of Hydrology, Vol. 604, 127209. 
  10. Gupta, H.V., Kling, H., Yilmaz, K.K., and Martinez, G.F. (2009). "Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling." Journal of Hydrology, Vol. 377, pp.80-91.  https://doi.org/10.1016/j.jhydrol.2009.08.003
  11. Hamon, W.R. (1961). "Estimating potential evapotranspiration." Journal of Hydraulics, ASCE. Vol. 87, pp. 107-120.  https://doi.org/10.1061/JYCEAJ.0000599
  12. Hargreaves, G.H., and Samani, Z.A. (1985). "Reference crop evapotranspiration from temperature." Applied Engineering in Agriculture, Vol. 1, No. 2, pp. 96-99.  https://doi.org/10.13031/2013.26773
  13. Jung, C.M., Shin, M.J., and Kim, Y.O. (2015). "a comparison study of runoff projections for Yongdam Dam watershed using SWAT." Journal of Korea Water Resources Association, Vol. 48, No. 6, pp. 439-449.  https://doi.org/10.3741/JKWRA.2015.48.6.439
  14. Jung, I.W., and Bae, D.H. (2005). "A study on PRMS applicability for Korean river basin." Journal of Korea Water Resources Association, Vol. 38, No. 9, pp. 713-725. 
  15. Jung, I.W., Lee, B.J., Jun, T.H., and Bae, D.H. (2008). "Hydrological model response to climate change impact assessments on water resources." Journal of Korea Water Resources Association, Vol. 41, No. 9, pp. 907-917.  https://doi.org/10.3741/JKWRA.2008.41.9.907
  16. Kang, S.U., Lee, D.R., and Lee, S.H. (2004). "A study on calibration of tank model with soil moisture structure." Journal of Korea Water Resources Association, Vol. 37, No. 2, pp. 133-144. 
  17. Kim, B.S. (2005). Impact assessment of climate chanage on hydrologic components and water resources in watershed. Ph.D. Dissertation, Inha University, pp. 199-202. 
  18. Kim, C.G., and Kim, N.W. (2012). "Comparison of natural flow estimates for the Han River Basin using TANK and SWAT models." Journal of Korea Water Resources Association, Vol. 45, No. 3, pp. 301-316.  https://doi.org/10.3741/JKWRA.2012.45.3.301
  19. Kim, D.H., and Kim, S.M. (2017). "Estimation of inflow into Namgang Dam according to climate change using SWAT model." Journal of the Korean Society of Agricultural Engineers, Vol. 59, No. 6, pp. 9-18.  https://doi.org/10.5389/KSAE.2017.59.6.009
  20. KIm, K.T., Choi, Y.S., and Lee, H.J. (2010). "Comparison and examination of the calculating hydrological geographic parameters using GIS." Journal of Korea Water Resources Association, Vol. 43, No. 1, pp. 25-39. 
  21. Kim, K.U., Song, J.H., Ahn, J.H.., Park, J.H., Jun, S.M., Song, I.H., and Kang, M.S. (2014). "Evaluation of the tank Model optimized parameter for watershed modeling." Journal of the Korean Society of Agricultural Engineers, Vol. 56, No. 4, pp. 9-19.  https://doi.org/10.5389/KSAE.2014.56.4.009
  22. Kim, N.W., Shin, A.H., and Kim, C.G. (2009). "Comparison of SWAT-K and HSPF for hydrological components modeling in the Chungju Dam watershed." Journal of the Envrionmental Sciences, Vol. 18, No. 6, pp. 609-619. 
  23. Kim, S.R., and Kim, S.M. (2018). "Evaluation of HSPF model applicability for runoff estimation of 3 sub-waterhsed in Namgang Dam watershed." Journal of Korean Society on Water Envrionment, Vol. 34, No. 3, pp. 328-338. 
  24. Kim, S.Y., and Yoon, K.S. (2019). "A study on the determination of the optimal resolution for the application of the distributed rainfall-runoff model to the flood forecasting system - focused on Geumho river basin using GRM." Journal of Korea Water Resources Association, Vol. 52, No.2, pp. 107-113. 
  25. Korea Institute of Civil Engineering and Building Technology (KICT). (2004). Public applications research of satellite data: A study of river information production and application using satellite images. pp. 69-75. 
  26. Korea Institute of Civil Engineering and Building Technology (KICT). (2005). Public applications research of satellite data: A study of river information production and application using satellite images. pp. 125-130. 
  27. Lee, E.H., and Seo, D.I. (2011). "Flow calibration and validation of Daechung Lake watershed, Korea using SWAT-CUP." Journal of Korea Water Resources Association, Vol. 44, No. 9, pp. 7111-720.  https://doi.org/10.3741/JKWRA.2011.44.9.711
  28. Lee, M.H., Im, E.S., and Bae, D.H. (2019). "Future projection in inflow of major multi-purpose dams in South Korea." Journal of Wetlands Research, Vol. 21, No. s-1, pp. 107-116. 
  29. Lee, M.J., Yoo, Y.H., Joo, H.J., Kim, K.T., Kim, H.S., and Kim, S.J. (2021). "Construction of rating curve at high water level considering rainfall effect in a tidal river." Journal of Hydrology: Regional Studies, Vol. 37, 100907. 
  30. Lee, S.H., Ahn, T.J., Yun, B.M., and Shim, M.P. (2003). "A tank model application to Soyanggang Dam and Chungju Dam with Snow accumulation and snow melt." Journal of Korea Water Resources Association, Vol. 36, No. 5, pp. 851-861.  https://doi.org/10.3741/JKWRA.2003.36.5.851
  31. Lee, S.H., and Kang, S.U. (2007). "A parameter regionalization study of a modified tank model using characteristic factors of watersheds." Journal of the Korean Societyof Civil Engineers, Vol. 27, No. 4B, pp. 379-385. 
  32. Lee, S.H., Seong, Y.J., and Jung, Y.H. (2022). "LENS-GRM applicability analysis and evaluation." Water, Vol. 14, 3897. 
  33. National Institute of Agricultural Science and Technology (NAS). (1992). Supplement: An introduction to Korean soils. Soil Survey Material 13, The Rural Development Administration, pp. 283-290. 
  34. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., and Williams, J.R. (2005). Soil and water assessment tool theoretical documentation. Agricultural Research Service, TX, U.S., pp. 57-121. 
  35. Ponce, V.M. (1989). Engineering hydrology: Principles and practices. Prentice Hall, Englewood Cliffs, NJ, U.S., pp. 43-52. 
  36. Priestley, C.H.B., and Taylor, R.J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review 100, Division of Atmospheric Physics, Victoria, Australia, pp. 81-92.  https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  37. Shim, S.K., Koo, B.Y., and Ahn, T.J. (2009). "Development of combination runoff model applied by genetic algorithm." Journal of Korea Water Resources Association, Vol. 42, No. 3, pp. 201-212.  https://doi.org/10.3741/JKWRA.2009.42.3.201
  38. Shin, M.J., and Choi, Y.S. (2018). "Sensitivity analysis to investigate the reliability of the grid-based rainfall-runoff model." Water, Vol. 10, 1839. 
  39. Sung, Y.K., Kim, S.H., Kim, H.J., and Kim, N.W. (2004). "The applicability study of SIMHYD and TANK model using different type of objective functions and optimization methods." Journal of Korea Water Resources Association, Vol. 37, No. 2, pp. 121-131.  https://doi.org/10.3741/JKWRA.2004.37.2.121
  40. Woo, S.Y., Lee, J.W., Kim, Y.W., and Kim, S.J. (2020). "Assessment of future stream flow and water quality of Man-gyeong River watershed based on extreme climate change scenario and inter-basin water transfer change using SWAT." Journal of Korea Water Resources Association, Vol. 53, No. 8, pp. 605-616. 
  41. Yoon, Y.N. (2007). Hydrology. Cheongmungak, pp. 164-174.