• Title/Summary/Keyword: 연속형 모의

Search Result 219, Processing Time 0.037 seconds

Improvement of the GRM model for Continuous Runoff Simulation (연속형 유출모의를 위한 GRM 모형의 개선)

  • Yun Seok Choi;Si Jung Choi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.382-382
    • /
    • 2023
  • 기존의 GRM(Grid based rainfall-Runoff Model)에서는 강우-유출 사상에 대한 유출 모의를 주요 대상으로 하였다. 본 연구에서는 GRM 모형에서 연속형 모의가 가능하도록 차단, 증발산, 융설을 모의할 수 있는 모듈을 개발하였다. 차단은 LAI의 연최댓값과 해당월의 값의 비율을 이용해서 계산하며, 증발산은 Blaney-Criddle, Hamon, Hargreaves, Priestly-Taylor 방법을 적용하였다. 융설은 Anderson에 의해서 제안된 방법을 적용하였다. 연속형 모의를 위한 모델 매개변수 설정 인터페이스를 추가하였으며, 기온, 일사량, 일조시간 등의 기상자료를 입력할 수 있게 하고, 계산된 각 수문성분을 출력할 수 있도록 GRM 모형의 입력과 출력 모듈을 개선하였다. 충주댐 유역을 대상으로 개선된 모형을 적용하였다. 공간자료의 해상도는 500m × 500m로 구축하였으며, 수문학적 지형정보와 토양도, 토지피복도를 구축하였다. 기상자료를 강수량, 일최고 기온, 일최저 기온, 일조시간, 일사량을 적용하였다. 증발산은 Hargreaves 방법을 이용하여 모의하였다. 모의 기간은 2001년 ~ 2018년이며, 이 중 2004년까지의 4년은 모델 warming up 기간으로 하고, 적합도 평가는 2005년 ~ 2018년의 모의결과를 이용하였다. 충주댐 유입량 모의결과를 관측값과 비교하였을 때 Nash-Sutcliffe model efficiency coefficient(NSE) 0.84, 상관계수 0.92, 총용적 오차는 0.26%를 나타내어 관측유입량을 잘 재현하였다. 그러므로 본 연구에서 개발된 차단, 증발산, 융설 모의 기법은 적절히 구현된 것으로 판단되며, GRM을 이용한 연속형 모의가 가능한 것으로 나타났다. 향후 연구에서는 좀 더 다양한 유역에 대해 GRM을 이용한 연속형 유출모의 결과를 평가할 필요가 있다.

  • PDF

Assessment of long term runoff simulation using SURR Model (연속형저류함수모형의 장기유출모의 적용성 평가)

  • Ji, Hee-Sook;Lee, Byong-Ju;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.255-255
    • /
    • 2011
  • 본 연구에서는 저류함수 기반의 시단위 연속형 강우-유출모형인 SURR모형을 장기유출 모의가 가능한 일 단위 모형으로 확장하여 그 적용성을 평가하고자 한다. 저류함수모형은 단일 호우사상에 대한 집중형 단기유출 모형으로 개발되어 장기유출 모형으로서의 활용성은 검토되지 못한 실정이다. 기존의 연구(셩영두 외, 2008)에서는 사상형 저류함수모형을 장기유출모형으로 적용하는데 그쳤으므로 유역 수문성분 모의가 가능한 연속형 장기유출 모형의 개발이 필요하다. 이를 위해 대상유역은 한강유역을 채택하였으며 일단위 기상자료와 수문자료를 구축하였다. 기존의 시단위 유역 수문성분(토양수분, 실제증발산량, 지표유출량, 중간유출량, 지하수유출량) 산정방법과 시단위 유역 및 하도 저류함수를 일단위로 확장하여 2002년부터 2009년까지 장기 유출모의를 실시하고자 한다. 본 연구 결과는 시단위 유출모의와 일단위 유출모의가 동시에 가능한 모형 개발에 활용할 수 있을것으로 판단된다.

  • PDF

Dam Inflow Prediction using Deep Learning Model based on Continuous Simulation (연속형 모의 기반의 딥러닝 모델을 활용한 댐 유입량 예측 및 평가)

  • Heo, Jae-Yeong;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.122-122
    • /
    • 2021
  • 전 세계적인 기후변화로 인해 태풍과 집중호우의 빈도와 규모가 증가하고 있으며 그로 인해 수재해 대응과 수자원 관리에 많은 어려움이 따른다. 댐 운영은 이러한 수자원 관리의 중요한 요소이며 정확한 댐 유입량의 예측은 효율적인 댐 운영과 관리의 필수적인 부분이다. 최근에는 여러 분야에서 활용되고 있는 딥러닝 모델을 활용하여 댐 유입량 예측에 관한 다수의 연구들이 수행되고 있다. 특히, 수문 시계열의 장기적인 특성과 비선형적인 관계를 고려하기 위해 연속형 모의를 기반으로 하는 딥러닝 모델의 적용 및 평가와 관련 연구의 필요성이 대두되고 있다. 본 연구에서는 연속형 모의를 기반으로 하는 딥러닝 모델을 활용하여 댐 유입량 예측을 수행하고자 하며 이의 적용성을 평가하고자 한다. 적용 대상 지역으로는 안동댐 상류 유역을 선정하였으며 2006년부터 2020년까지의 시 단위 강우 및 댐 유입량 자료를 활용하였다. 선행시간(1~6시간)별 예측 유입량과 관측 유입량의 비교를 통한 정량적 평가를 수행하였다. 또한 입력 자료에 대한 과거 기간, 모델 구성, 손실함수 등에 대한 조건별 평가를 통해 예측 정확도의 변화에 대한 분석을 수행하였다. 본 연구결과를 통해, 딥러닝 기반의 댐 유입량 예측 정확도에 대한 향상과 실시간 예측을 위한 딥러닝 모델의 활용성 증대에 기여할 것으로 기대된다. 향후, 강우 예보 자료를 연계한 딥러닝 기반의 실시간 댐 유입량 예측 기법을 제안하고 이의 활용성을 평가하고자 한다.

  • PDF

Simulation of dam inflow using a square grid and physically based distributed model (격자 기반의 물리적 분포형 모형을 이용한 댐 유입량 모의)

  • Choi, Yun Seok;Choi, Si Jung
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.4
    • /
    • pp.289-300
    • /
    • 2024
  • The purpose of this study is to evaluate the applicability of the GRM (Grid based rainfall-Runoff Model) to the continuous simulation by simulating the dam inflow. The GRM was previously developed for the simulation of rainfall-runoff events but has recently been improved to enable continuous simulation. The target watersheds are Chungju dam, Andong dam, Yongdam dam, and Sumjingang dam basins, and runoff models were constructed with the spatial resolution of 500 m × 500 m. The simulation period is 21 years (2001 to 2021). The simulation results were evaluated over the 17 year period (2005 to 2021), and were divided into three data periods: total duration, wet season (June to September), and dry season (October to May), and compared with the observed daily inflow of each dam. Nash-Sutcliffe efficiency (NSE), Kling-Gupta efficiency (KGE), correlation coefficient (CC), and total volume error (VE) were used to evaluate the fitness of the simulation results. As a result of evaluating the simulated dam inflow, the observed data could be well reproduced in the total duration and wet season, and the dry season also showed good simulation results considering the uncertainty of low-flow data. As a result of the study, it was found that the continuous simulation technique of the GRM model was properly implemented and the model was sufficiently applicable to the simulation of dam inflow in this study.

A Study on the Development of the Stochastic Continuous Storage Function Model (추계학적 연속형 저류함수 모형 개발에 관한 연구)

  • Lee, Byong-Ju;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.231-235
    • /
    • 2009
  • 본 연구에서는 홍수예보를 위한 사상형 모형인 저류함수모형 적용시 문제점을 개선하기 위해 기존의 저류함수 모형에 자유수와 장력수의 2개 영역으로 구성된 토양수분모의 컴포넌트를 결합하여 지표유출, 중간유출, 기저유출의 유출수문성분에 대한 연속적인 모의가 가능하도록 하였으며 실시간 홍수예측을 위해 다수의 유량 관측지점과의 실시간 오차 보정이 가능하도록 앙상블 칼만 필터링 기법을 도입하였다. 개발된 모형의 적용성을 평가하기 위해 낙동강 권역을 대상유역으로 선정하였으며 시단위 강우자료, 기상자료, 유량자료를 비롯하여 GIS를 기반의 지형자료를 구축하였다. 연속형 저류함수형의 매개변수 추정결과 주요지점의 관측유량에 대해 높은 적합도를 보였으며 1시간 선행시간의 홍수량 예측결과에서도 높은 정확도를 보이는 것으로 나타났다.

  • PDF

A Generalized Likelihood Ratio Test in Outlier Detection (이상점 탐지를 위한 일반화 우도비 검정)

  • Jang Sun Baek
    • The Korean Journal of Applied Statistics
    • /
    • v.7 no.2
    • /
    • pp.225-237
    • /
    • 1994
  • A generalized likelihood ratio test is developed to detect an outlier associated with monitoring nuclear proliferation. While the classical outlier detection methods consider continuous variables only, our approach allows both continuous and discrete variables or a mixture of continuous and discrete variables to be used. In addition, our method is free of the normality assumption, which is the key assumption in most of the classical methods. The proposed test is constructed by applying the bootstrap to a generalized likelihood ratio. We investigate the performance of the test by studying the power with simulations.

  • PDF

Stochastic Continuous Storage Function Model with Ensemble Kalman Filtering (II) : Application and Verification (앙상블 칼만필터를 연계한 추계학적 연속형 저류함수모형 (II) : - 적용 및 검증 -)

  • Lee, Byong-Ju;Bae, Deg-Hyo;Shamir, Eylon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.11
    • /
    • pp.963-972
    • /
    • 2009
  • The objective of this study is to evaluate an application of stochastic continuous storage function model with ensemble Kalman filter technique. The case study is performed at the upstream basin of Jibo streamflow gauge including Andong and Imha dam. Test period is for the rainy season during 2006 and 2007. Long term runoff analysis is feasible in the case of using deterministic model. Ensemble members for input data and parameters are generated using Monte Carlo simulation for the purpose of applying ensemble Kalman filter technique. The cumulative absolute errors of stochastic model to the deterministic one are improved for the amount of 17.5 %, 18.3 % and more than 40.0 % for Andong dam, Imha dam and Jibo station, respectively. The results indicate that the stochastic model improves the accuracy of the simulated discharge considerably.

Development of Continuous Rainfall-Runoff Model for Flood Forecasting on the Large-Scale Basin (대유역 홍수예측을 위한 연속형 강우-유출모형 개발)

  • Bae, Deg-Hyo;Lee, Byong-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.1
    • /
    • pp.51-64
    • /
    • 2011
  • The objective of this study is to develop a continuous rainfall-runoff model for flood prediction on a large-scale basin. For this study, the hourly surface runoff estimation method based on the variable retention parameter and runoff curve number is developed. This model is composed that the soil moisture to continuous rainfall can be simulated with applying the hydrologic components to the continuous equation for soil moisture. The runoff can be simulated by linking the hydrologic components with the storage function model continuously. The runoff simulation to large basins can be performed by using channel storage function model. Nakdong river basin is selected as the study area. The model accuracy is evaluated at the 8 measurement sites during flood season in 2006 (calibration period) and 2007~2008 (verification period). The calibrated model simulations are well fitted to the observations. Nash and Sutcliffe model efficiencies in the calibration and verification periods exist in the range of 0.81 to 0.95 and 0.70 to 0.94, respectively. The behavior of soil moisture depending on the rainfall and the annual loadings of simulated hydrologic components are rational. From this results, continuous rainfall-runoff model developed in this study can be used to predict the discharge on large basins.

스플라인을 이용한 스코어 카드

  • Choe, Min-Seong;Gu, Ja-Yong;Choe, Dae-U
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.285-288
    • /
    • 2003
  • 신용위험 관리에서 필수적인 방법론이 스코어 카드이며 이를 작성하는 데에 있어서 널리 쓰이는 방법 중의 하나가 로지스틱 회귀분석이다. 본 논문에서는 로지스틱 회귀 방법에 기초한 스플라인 방법론을 소개하고자 한다. 최종 스코어 카드는 연속형 변수를 범주형 변수화 하므로 조각 선형 스플라인을 채택하였다. 모의 실험을 통하여 제안된 방법의 성 능을 규명 하였다.

  • PDF

Applicability of SURR Model for Geum-River Basin (금강 유역에 대한 SURR 모형의 적용성 평가)

  • Lim, Ye Jin;Heo, Jae-Yeong;Ngoc, Tien Duong;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.361-361
    • /
    • 2022
  • 최근 기후변화의 영향으로 국지성 집중호우에 의한 홍수 피해가 빈번히 발생하고 있으며, 이로 인한 인명 및 재산 피해가 증가하고 있다. 2020년의 경우, 최장 기간 장마로 인해 금강유역을 비롯한 전국에서 산사태, 제방 붕괴, 침수 등 많은 피해가 발생하였다. 이러한 홍수피해 저감을 위해서는 신뢰도 높은 홍수량 예측이 요구된다. 특히, 토양수분과 같이 시간에 따른 유역 수문 정보를 모의 과정에서 고려하는 것이 매우 중요하다. 아울러, 유역 전반에 대한 토양수분 정보는 실시간으로 획득하는 것이 어려워 이를 고려할 수 있는 강우-유출모형을 활용하는 것이 바람직하다. 이러한 수문모형으로 SURR(Sejong University Rainfall Runoff) 모형이 있으며 다양한 적용 및 평가를 통해 모형 활용성에 대한 증진이 요구되는 실정이다. 본 연구에서는 저류함수 기반의 시단위 연속형 강우-유출모형(SURR 모형)을 활용한 강우-유출 모의를 수행하여 홍수 피해가 컸던 금강유역을 대상으로 모형의 적용성을 평가하고자 한다. 평가기간은 2006~2020년으로써 유량관측 지점별 매개변수 검·보정을 수행하였다. 관측 및 모의 유량에 대한 도시적 및 통계적(CC, RMSE, NSE) 평가를 수행하여 유출 모의에 대한 정확도를 평가하였다. 평가결과, 관측 및 모의 유량 간의 거동이 유사한 것으로 나타났으며 첨두유량 및 시간이 비교적 잘 일치하는 것으로 나타나 대상유역의 신뢰도 높은 유출량을 모의하는데 적합한 것으로 확인되었다. 본 연구 결과는 향후 AI 기법과 연계한 돌발홍수 예측 연구에 활용하여 정확도 높은 유역 홍수량 예측 및 선행시간 확보에 도움이 될 것으로 기대된다.

  • PDF