DOI QR코드

DOI QR Code

Optimization-based model correlation of satellite payload structure

위성 탑재체 구조물의 최적화 기반 모델 보정

  • Received : 2024.01.11
  • Accepted : 2024.03.26
  • Published : 2024.04.30

Abstract

A satellite is ultimately verified by performing a coupled load analysis with the launch vehicle. To increase the accuracy of the coupled load analysis results, it is important to have good accuracy of the finite element model. Therefore, finite element model correlation is essential. In general, model correlation is performed by changing the material properties and thickness one by one, but this process takes a lot of time and cost. The current paper proposes an efficient model correlation method using optimization. Significant variables were selected through analysis of variance, and the time and cost required for analysis and optimization were reduced by using the Kriging surrogate model. The method proposed in this paper can be applied only with the vibration test results, and it has a great advantage in terms of efficiency in that it can significantly reduce the numerical calculation cost and time required.

인공위성은 발사체 모델과 연성하중해석을 수행하여 설계를 최종 검증하게 된다. 연성하중해석 결과의 정확도를 높이기 위해서는 유한요소모델 정확도가 매우 중요하며, 이를 위해 모델 보정은 필수적이다. 일반적으로 모델 보정은 재료 물성치와 두께 등을 하나씩 바꿔가며 수행하게 되는데, 이는 매우 많은 시간과 비용이 소요된다. 따라서 본 논문에서는 최적화 기법을 이용하여 탑재체 유한요소모델의 보정작업을 보다 효율적으로 수행하였다. 분산분석을 통해 중요 변수를 선정하고, 크리깅 대체 모델을 이용하여 해석과 최적화에 필요한 시간과 비용을 절감하였다. 본 논문에서 제안한 보정 방법은 진동 시험 결과만 있으면 적용할 수 있으며, 수치적인 계산 비용과 소요 시간을 대폭 줄일 수 있다는 점에서 효율성 측면에서 큰 장점이 있다.

Keywords

References

  1. Lim, J. H., Kim, K. W., Kim, S. H., and Hwang, D. S., "Finite Element Model Updating and Validation of Satellites for Coupled Load Analysis," Journal of the Korean Society for Aeronautical and Space Sciences, vol. 41, no. 8, pp. 605-612, 2013.
  2. Hwang, D. S., Lee, Y. S., and Kim, I. G., "A Study on the Optimization of a Spacecraft Structure by Using Coupled Load Analaysis Model and Modal Transient Analysis," Journal of the Korean Society for Aeronautical and Space Sciences, vol. 32, no. 6, pp. 34-48, 2004.
  3. Wickramasinghe, V., Chen, Y., Zimcik, D., Tremblay, P., Dahl, H., and Walkty, I., "Modal survey test and model correlation of the CASSIOPE spacecraft," Experimental Techniques, vol. 37, pp. 15-23, 2013.
  4. Aborehab, A., Kamel, M., Nemnem, A. F., and Kassem, M., "Finite element model updating of a satellite honeycomb sandwich plate in structural dynamics," International Journal of Space Structures, vol. 36, no. 2, pp. 105-116, 2021.
  5. Luo, H., Wang, W., Fu, J., and Jiao, L., "Finite element model updating of satellite sailboard based on sensitivity analysis," Shock and Vibration, 2019.
  6. CEKIC, Abdulkadir., "Improvement of finite element model by using sine vibration test results of acommunication satellite," Master's Thesis, Middle East Technical University, 2021.
  7. Kim, J., Jang. J., Kim. S., Lee, T. H., Cho, S. G., Kim, H. W., and Hong, S., "An efficient constraint boundary sampling method for sequential RBDO using Kriging surrogate model," The Korean Society of Mechanical Engineers.A, vol. 40, no. 6, pp. 587-593, 2016.
  8. Yoon, D. H., and Kwon, S. C., "Validation of structural safety on electro-optical payload under launch environment," The Korean Society for noise and Vibration Engineering, vol. 30, no. 6, pp. 597-607, 2020.
  9. Structural finite element models, ECSS-E-ST-32-03C, ESA Requirements and Standards Division, Netherlands, 2008.
  10. Modal survey assessment, ECSS-E-ST-32-11C, ESA Requirements and Standards Division, Netherlands, 2008.
  11. Qui, C., Guan, Z., Jiang, S., and Li, Z., A method of determining effective elastic properties of honeycomb cores based on equal strain energy, Chinese Journal of Aeronautics, vol. 30, no. 2, pp. 766-779, 2017.
  12. Mongomery, D. C., Montgomery: design and analysis of experiments, Fifth Ed., John Willy & Sons, New York, USA, 2017.
  13. Kim, S., Lim, W., Kim, H., Ryu, N., Kwon, K., Lim, S., ... and Lee, T. H., "Robust target cascading for improving firing accuracy of combat vehicle," Journal of Mechanical Science and Technology, vol. 30, pp. 5577-5586, 2016.
  14. Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P., "Design and analysis of computer experiments," Journal of the Institute of Mathematical Statistics, vol. 4, no. 4, pp. 409-423, 1989.
  15. Kwon, H., Yi, S., and Choi, S., "Numerical investigation for erratic behavior of Kriging surrogate model," Journal of Mechanical Science and Technology, vol. 28, pp. 3697-3707, 2014.
  16. Kim, T. K., and Lee, T. H., "Comparison of global models for calculation of accurate and robust statically moments in MD method based Kriging metamodel," In Proceedings of the KSME Conference, pp. 678-683, 2008.
  17. Park, J. S., "Optimal Latin-hypercube designs for computer experiments," Journal of statistical planning and inference, vol. 39, no. 1, pp. 95-111, 1994.
  18. Johnson, M. E., Moore, L. M., and Ylvisaker, D., "Minimax and maximin distance designs," Journal of statistical planning and inference, vol. 26, no. 2, pp. 131-148, 1990.
  19. Lophaven, S. N., Nielsen, H. B., and Sondergaard, J., "Aspects of the matlab toolbox DACE," Technical report IMM-REP-2002-13, The Technical University of Denmark, 2002.
  20. Kim, S., Kim, S., Kim, T., Choi, S., Lee, T. H., Park, J. S., and Jung, S. H., "Topology optimization of reactive material structures for penetrative projectiles," Defence Technology, vol. 18, no. 7, pp. 1205-1218, 2022.
  21. Meckesheimer, M., Barton, R. R., Simpson, T. W., and Booker, A. J., "Computationally inexpensive meta model assessment strategies," In International design engineering technical conferences and computers and information in engineering conference, American Society of Mechanical Engineers, vol. 80227, pp. 191-201, 2001.