• Title/Summary/Keyword: 위성 구조체

Search Result 274, Processing Time 0.036 seconds

A Study on the Verifying Structural Safety of Satellite Structure by Coupled Load Analysis (연성하중해석을 통한 위성구조체의 구조안정성 검증 연구)

  • Kim, Kyung-Won;Kim, Sun-Won;Lim, Jae-Hyuk;Kim, Chang-Ho;Hwang, Do-Soon
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.63-68
    • /
    • 2010
  • Satellite structure should be designed to support safely the payload and several actuators under launch and on-orbit environments. After the configuration design of satellite, the structural analysis is performed using quasi-static load provided by launch vehicle manufacturer for detail design of satellite. In order to verify the safety of satellite structure designed using quasi-static loads, launch vehicle manufacturer performs coupled load analysis with satellite and launch vehicle models. For developing satellite, satellite model was reduced into the Craig-Bampton model for coupled load analysis, and delivered to the launch vehicle manufacturer. Launch vehicle manufacturer have done the coupled load analysis, and offered the acceleration and displacement results to the satellite manufacturer. From the analysis results, we have confirmed that satellite is designed safely and there is no possibility of interference and conflict in the inner/outer side of satellite.

Optimization of Spacecraft Structure by Using Coupled Load Analysis (연성하중해석을 이용한 위성체 구조부재의 최적화)

  • Hwang, Do-Soon;Lee, Young-Sin;Kim, In-Gul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.106-113
    • /
    • 2002
  • In spacecraft system, structure subsystem has the mission of supporting all the components safely under various space environmental conditions. The safety of spacecraft structure is finally verified from the coupled load analysis, which is a branch of load analysis which combines the launch vehicle and satellite. This study introduces the optimization algorithm to reduce the weight of spacecraft structure under launch environmental conditions directly. The acceleration responses are obtained by the introduction of coupled load analysis, which lead to check the failure of spacecraft structural members. The results show a 12% saving of structural weight and this saving is mainly driven by the thickness of honeycomb core, which strongly affects the natural frequencies of platforms and panels.

추진계 방식에 따른 정지궤도 복합위성의 구조설계 비교연구

  • Park, Jong-Seok;Choe, Jeong-Su;Kim, Hyeong-Wan;Choe, Jae-Dong;Kim, Chang-Ho;Han, Jo-Yeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.179.1-179.1
    • /
    • 2012
  • 정지궤도 복합위성 2호는 현재 기상 및 해양관련 관측임무를 수행중인 천리안위성의 임무승계를 위해 현재 개발이 진행 중이다. 천리안위성에 비해 수명이 확대되고, 임무 탑재체의 중량도 증가하여 추진제량의 대폭 증가가 필요한 것으로 분석되고 있다. 이로 인해 추진제 탱크의 확장이 불가피하여 현재 가용한 탱크를 기반으로 구조체 설계에 대한 비교 연구가 수행되었다. 정지궤도위성의 추진제 탱크 수용은 크게 측면 고정식 구형 탱크의 수직 배치방식과 극 고정식 실런더형 탱크의 수평 배치방식으로 구분된다. 추진제량 확대에 따라 두가지 방식 모두 구조체 내부에 충분한 강성확보와 하중전달을 목적으로 튜브형 구조물이 적용되며, 이를 토대로 구조체 설계가 이루어 진다. 본 논문에서는 이러한 추진계 탱크 수용 방식을 기반으로 정지궤도 복합위성에 적용될 구조체 설계 개념을 제시하고, 비교 연구를 통해 각 방식이 갖는 구조체 설계의 장단점을 기술하고자 한다.

  • PDF

과학위성 1호 구조체 개발

  • 이상현;탁경모;차원호;이준호;장태성
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.109-109
    • /
    • 2003
  • 원자외선분광기(FIMS), 우주물리탑재체(SPP)를 탑재한 과학기술위성 1호는 무게 약 106kg으로 고도 690km의 원형궤도에 러시아의 COSMOS-3M에 의해 플레세츠크(Plesetsk)에서 발사 되었다. 과학기술위성 1호는 적층타입(Stack Type)으로 구조체가 설계되었으며, 하나의 모듈을 하나의 구조물로 만들어 여러 개의 구조물을 쌓아 타이바(Tie Bar)를 사용하여 체결하는 방식을 채택하고 있다. 이것은 모듈을 구조체로 사용함으로써 무게를 줄일 수 있으며, 강성이 높고, 하니스 처리가 용이한 장점이 있다. 구조체는 발사환경과 우주환경을 견디도록 설계되어야 하며, 그 과정을 지상에서 시험으로 검증을 하게 된다. 본 논문은 과학기술위성 1호의 구조물 개발과정과 제작과정을 설명하고, 제작된 구조물의 시험과정과 결과를 살펴보았다.

  • PDF

통신해양기상위성의 개발

  • Lee, Ho-Hyeong
    • Satellite Communications and Space Industry
    • /
    • v.13 no.1 s.28
    • /
    • pp.72-80
    • /
    • 2006
  • 통신해양기상위성은 기상관측, 해양관측 및 통신방송의 3가지 임무를 수행하는 정지궤도 복합임무 위성이다. 위성본체는 기존의 화성탐사선(Mars Express) 위성의 구조를 확장하여 새로 개발한 구조체에 기존의 E3000 통신위성 버스에 사용하였던 전기전자 부품 및 추진계를 사용한다. 3축제어 위성으로서 태양전지판은 한 쪽에만 부착되어 있으며, 반대쪽에는 종래의 기상위성이 모멘트 균형을 위하여 갖고 있었던 솔라세일(solar sail)을 갖고 있지 않다. 기상탑재체는 미국의 아이티티(ITT)가 제작 공급하고, 해양탑재체는 이에이디에스 아스트리움(EADS Astrium)사와 항공우주연구원이 공동으로 개발하며, 통신 탑재체는 전자통신연구원에서 개발한다. 지상국은 항공우주연구원이, 관제시스템은 전자통신연구원이 개발을 담당하고 있다. 개발의 전 과정이 해외협력 개발로 이루어진다. 설계는 프랑스의 뚤르즈 소재 이에이디에스 아스트리움(EADS Astrium)사에서 한국 기술진의 참여 하에 이루어지며, 조립 및 시험은 항공우주연구원의 시설을 이용하여 한국에서 이루어진다. 발사준비도 공동으로 수행하고, 발사 후 전이궤도운영은 아스트리움사의 지상국을 사용하여 수행하여 목표궤도에 진입시킨 후 항공우주연구원의 지상국에서 궤도 내 시험(in-orbit-test)를 완료한 후 위성을 인도 받는다.

  • PDF

Development of a Composite Spacecraft Structure for STSAT-3 Satellite Program (소형 복합재 위성 구조체 개발)

  • Cho, Hee-Keun;Seo, Jung-Ki;Kim, Byoung-Jung;Jang, Tae-Seung;Cha, Won-Ho;Lee, Dai-Gil;Myung, Noh-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.727-736
    • /
    • 2010
  • A satellite that has an all-composite structure, STSAT-3(science and technology satellite), was initially developed in Korea. Partially use of advanced composites in space applications such as solar panel is well developed, however the application of an all-composite satellite bus has never been achieved in Korea. This study emphasizes the application of composite technology to the design and fabrication of an all-composite spacecraft bus for small-class satellite STSAT-3. Moreover its structure design concept is totally different from the one that was used in the previous satellites developed in Korea.

저궤도 지구관측위성 구조체의 자재 및 공정 관련 연구

  • Lee, Ju-Hun;Lee, Chun-U;Im, Jae-Hyeok;Kim, Seon-Won;Kim, Gyeong-Won;Hwang, Do-Sun;Song, Un-Hyeong;Lee, Seong-Beom;Gwon, Sang-Ryong
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.28.1-28.1
    • /
    • 2009
  • 고해상도 카메라 혹은 영상레이더 안테나를 장착하여 지구를 관측하는 인공위성의 구조체는 발사하중 및 우주환경의 궤도 상에서 탑재된 장비를 보호하게끔 설계되고 제작된다. 구조체는 발사체와의 공진을 피할 수 있는 강성을 가져야 하며, 주 구조물의 강도는 발사체로부터의 하중을 견딜 수 있도록 설계된다. 또한, 극한 우주환경 하에서 구조체의 변형이 최소화 되도록 설계된다. 상기 설계 내용이 완벽하게 구조체에 반영되기 위해서는 우주용자재 및 공정의 적절한 선정이 이루어 져야 한다. 이 논문은 인공위성 구조체에 사용된 Metal, Non-metal 및 조립용 Hardware 자재 (규격 포함)와 측면패널/플랫폼 및 태양전지판 Substrate 등 주요 구조물의 제작공정에 대하여 기술한다. 그리고, 국산화가 이루어진 조립용 Hardware의 Dry Film Lubricant 공정에 대해서도 기술한다.

  • PDF

Optical Sensor Support Structure for Geo-stationary Satellite (정지궤도 위성의 광학 센서 지지 구조물)

  • Kim, Chang-Ho;Kim, Kyung-Won;Kim, Sun-Won;Lim, Jae-Hyuk;Hwang, Do-Soon
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.8-13
    • /
    • 2010
  • Satellite structure should be designed to accommodate and support safely the payload and equipments necessary for its own missions and to secure satellite and payloads from severe launch environments. The launch environments imposed on satellites are quasi-static accelerations, aerodynamic loads, acoustic loads and shock loads. Especially when optical payload is accommodated, satellite structure usually adopts the optical bench consisting of composite material not only to support and secure but also to guarantee good pointing stability against extreme thermal environments. This paper deals with optical bench and support structure which shall be designed to minimize the loads transferred to optical payloads from satellite.

Conceptual Design of Structure Subsystem for Geo-stationary Multi-purpose Satellite (정지궤도복합위성 구조계 개념설계)

  • Kim, Chang-Ho;Kim, Kyung-Won;Kim, Sun-Won;Lim, Jae-Hyuk;Kim, Sung-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.110-115
    • /
    • 2012
  • Satellite structure should be designed to accommodate and support safely the payload and equipments necessary for its own missions and to secure satellite and payloads from severe launch environments. The launch environments imposed on satellites are quasi-static accelerations, aerodynamic loads, acoustic loads and shock loads. Currently KARI(Korea Aerospace Research Institute) is developing Geo-KOMPSAT-2(Geostationary Earth Orbit KOrea Multi-Purpose Satellite) with technologies which were acquired during COMS(Communication, Ocean and Meteorological Satellite) development. As compared to COMS Geo-KOMPSAT-2 requires more propellant due to mass increase of Advanced Meteorological Payload with high resolution and increase of miss life, it is difficult to apply the design concept of COMS to Geo-KOMPSAT-2. This paper deals with conceptual design of Structural Subsystem for Geo-KOMPSAT-2.