DOI QR코드

DOI QR Code

Indoor autonomous driving system based on Internet of Things

사물인터넷 기반의 실내 자율주행 시스템

  • Seong-Hyeon Lee (School of Computer and Artificial Intelligence Engineering, Pukyong National University) ;
  • Ah-Eun Kwak (School of Computer and Artificial Intelligence Engineering, Pukyong National University) ;
  • Seung-Hye Lee (School of Computer and Artificial Intelligence Engineering, Pukyong National University) ;
  • Tae-Kook Kim (School of Computer and Artificial Intelligence Engineering, Pukyong National University)
  • 이성현 (국립부경대학교 컴퓨터.인공지능공학부) ;
  • 곽아은 (국립부경대학교 컴퓨터.인공지능공학부) ;
  • 이승혜 (국립부경대학교 컴퓨터.인공지능공학부) ;
  • 김태국 (국립부경대학교 컴퓨터.인공지능공학부)
  • Received : 2024.01.15
  • Accepted : 2024.02.28
  • Published : 2024.04.30

Abstract

This paper proposes an IoT-based indoor autonomous driving system that applies SLAM (Simultaneous Localization And Mapping) and Navigation techniques in a ROS (Robot Operating System) environment based on TurtleBot3. The proposed autonomous driving system can be applied to indoor autonomous wheelchairs and robots. In this study, the operation was verified by applying it to an indoor self-driving wheelchair. The proposed autonomous driving system provides two functions. First, indoor environment information is collected and stored, which allows the wheelchair to recognize obstacles. By performing navigation using the map created through this, the rider can move to the desired location through autonomous driving of the wheelchair. Second, it provides the ability to track and move a specific logo through image recognition using OpenCV. Through this, information services can be received from guides wearing uniforms with the organization's unique logo. The proposed system is expected to provide convenience to passengers by improving mobility, safety, and usability over existing wheelchairs.

본 논문은 터틀봇3 (TurtleBot3)를 기반으로 ROS(Robot Operating System) 환경에서 SLAM(Simultaneous Localization And Mapping)과 Navigation 기법을 적용한 사물인터넷 기반의 실내 자율주행 시스템을 제안한다. 제안한 자율주행 시스템을 실내 자율주행 휠체어 및 로봇 등에 적용 가능하다. 본 연구에서는 실내 자율주행 휠체어에 적용하여 동작을 검증하였다. 제안한 자율주행 시스템은 2가지 기능을 제공한다. 첫째, 실내 환경 정보를 수집 및 저장하고, 이를 통해 휠체어가 장애물을 인식할 수 있도록 한다. 이를 통해 만들어진 Map을 이용한 Navigation을 수행하여 탑승자가 원하는 위치까지 휠체어의 자율주행을 통해 이동할 수 있다. 둘째, OpenCV를 이용한 이미지 인식을 통해 특정 로고를 추적하여 이동하는 기능을 제공한다. 이를 통해 기관 고유 로고가 그려진 유니폼을 착용한 안내원에게 안내 서비스를 받을 수 있도록 한다. 제안한 시스템은 기존의 휠체어보다 이동성, 안전성, 사용성을 향상해 탑승자에게 편리함을 제공할 것으로 기대한다.

Keywords

Acknowledgement

이 논문은 국립부경대학교 자율창의학술연구비(2022년)에 의하여 연구되었음.

References

  1. KOSIS(Korean Statistical Information Service), Status of need and possession of major assistive devices for the disabled[Internet], https://kosis.kr/statHtml/statHtml.do?orgId=117&tblId=DT_11732S0113&vw_cd=MT_ZTITLE&list_id=117_11732_10_002_04&scrId=&seqNo=&lang_mode=ko&obj_var_id=&itm_id=&conn_path=MT_ZTITLE&path=%252FstatisticsList%252FstatisticsListIndex.do.
  2. S.H.Lee, A.E.Kwak, S.H.Lee and T.K.Kim, "A Study on the Smart Wheelchair," The Korea Multimedia Society Spring conference 2023, Vol.26, No.1, pp.92-94, 2023.
  3. D.W.Kim, Y.H.Lee, W.H.Jang, K.T.Moon, S.W.Jeong, and J.B.Kim, "Comparative Usability Test between Manual Wheelchairs for the Development of Manual & Power Hybrid Wheelchairs : Focusing on People with Physical Disabilities," Journal of the Korea Academia-Industrial cooperation Society, Vol.24, No.3, pp.392-401, 2023. https://doi.org/10.5762/KAIS.2023.24.3.392
  4. J.S.Ju, Y.H.Shin and E.Y.Kim, "Intelligent Wheelchair System using Face and Mouth Recognition," Journal of KISS : Software and Applications, Vol.36, No.2, pp.161-168, 2009. https://doi.org/10.1145/1502650.1502693
  5. S.H.Park, "Gaze Recognition Interface Development for Smart Wheelchair," Journal of Rehabilitation Welfare Engineering & Assistive Technology, Vol.5, No.1, pp.103-110, 2011.
  6. S.C.Kang, "Development of powered wheelchair control system using head tilt signal," Dong-A university, Doctoral thesis, 2010.
  7. Y.R.Choi, K.E.Ko, H.J.Park and K.Y.Lee, "Intelligent Smart Wheelchiars Using IoT," The Journal of the Institute of Internet, Broadcasting and Communication, Vol.22, No.1, pp.89-94, 2022. https://doi.org/10.7236/JIIBC.2022.22.1.89
  8. TurtleBot, TurtleBot[Internet], https://www.turtlebot.com/.
  9. Ubuntu, Ubuntu: Enterprise Open Source and Linux [Internet], https://ubuntu.com/.
  10. B.Peng, R.U.Numonov, S.K.Yeo, T.K.Kim, "Implementation of IoT-Based Hydroponic Cultivation System," Journal of Internet of Things and Convergence, Vol.9, No.4, pp.56-69, 2023.
  11. Raspberry Pi Foundation, Raspberry Pi[Internet], https://www.raspberrypi.com.
  12. J.H.Moon, B. Peng, J.H.Kwon and T.K.Kim, "Implementation of Smart Umbrella Stand Based on IoT," Journal of Internet of Things and Convergence, Vol.9, No.1, pp.57-64, 2023. https://doi.org/10.20465/KIOTS.2023.9.1.057
  13. ROS Wiki, roscore[Internet], https://wiki.ros.org/roscore/.
  14. ROS Wiki, RViz[Internet], http://wiki.ros.org/rviz/.
  15. T.H.Park, "Implementation of an Errand Robot Based on Robot Operating System," Soongsil university, Master's thesis, 2020.
  16. D.J.Kim, W.S.Choi, S.P.Ju, S.M.Yoo and J.Y.Choi, "Smart Streetlight based on Accident Recognition using Raspberry Pi Camera OpenCV," The Journal of The Korea Institute of Electronic Communication Sciences, Vol.17, No.6, pp.1229-1236, 2022. https://doi.org/10.13067/JKIECS.2022.17.6.1229
  17. S.H.Chun, J.H.Choi, Y.J.Kim and S.K.Kang, "Smart Door Implementation Using Jetson Nano-Based OpenCV and Deep Learning," The Journal of Korean Institute of Communications and Information Sciences, Vol.46, No.2, pp.380-387, 2021. https://doi.org/10.7840/kics.2021.46.2.380