DOI QR코드

DOI QR Code

A novel triaxial testing device for unsaturated soils with measurement of suction and volumetric strains

  • Qian-Feng Gao (School of Traffic & Transportation Engineering, Changsha University of Science & Technology) ;
  • Mohamad Jrad (Laboratoire d'Etude des Microstructures et de Mecanique des Materiaux, Universite de Lorraine - CNRS UMR 7239, Arts et Metiers ParisTech) ;
  • Mahdia Hattab (Laboratoire d'Etude des Microstructures et de Mecanique des Materiaux, Universite de Lorraine - CNRS UMR 7239, Arts et Metiers ParisTech) ;
  • Said Taibi (Laboratoire LOMC, Universite Le Havre Normandie & CNRS) ;
  • Jean M. Fleureau (Laboratoire de Mecanique de Paris-Saclay, Universite Paris-Saclay, CentraleSupelec, ENS Paris-Saclay)
  • 투고 : 2023.04.13
  • 심사 : 2024.01.13
  • 발행 : 2024.04.25

초록

Standard triaxial cells are commonly used to measure the mechanical behavior of saturated soils. However, this type of standard system is difficult to use for unsaturated soil specimens since it cannot measure the changes in the pore-air volume and pressure. This paper proposes to extend the measurement possibilities of the standard triaxial testing device in a simple way and to adapt it to partially saturated soils. The system is supplied by two hygrometers installed at each end of the cylindrical unsaturated specimen to measure local relative humidity, which allows the derivation of suction. The volumetric strain of the specimen is calculated by analyzing digital photos captured from the outside of the transparent cell wall. Specimens made of kaolin clay, having different hydraulic properties, were tested to verify the reliability of the measurements, and thus, the relevance of the proposed techniques to study the mechanical behavior of unsaturated soils.

키워드

참고문헌

  1. Aversa, S. and Nicotera, M.V. (2002), "A triaxial and oedometer apparatus for testing unsaturated soils", Geotech. Test. J., 25(1), 3-15. https://doi.org/10.1520/GTJ11075J.
  2. Bella, G. (2021), "Water retention behaviour of tailings in unsaturated conditions", Geomech. Eng., 26(2), 117-132. https://doi.org/10.12989/gae.2021.26.2.117.
  3. Bhandari, A.R., Powrie, W. and Harkness, R.M. (2012), "A digital image-based deformation measurement system for triaxial tests", Geotech. Test. J., 35(2), 209-226. https://doi.org/10.1520/GTJ103821.
  4. Biarez, J. (1962), "Contribution a l'etude des proprietes mecaniques des sols et des materiaux pulverulents", These de Doctorat, Grenoble.
  5. Bishop, A.W. and Donald, I.B. (1961), "The experimental study of party saturated soil in the triaxial apparatus", Proceedings of the 5th Conf. On Soil Mechanics and Found Eng, Paris, July.
  6. Bishop, A.W. and Green, G.E. (1965), "The influence of end restraint on the compression strength of a cohesionless soil", Géotechnique, 15(3), 243-266. https://doi.org/10.1680/geot.1965.15.3.243
  7. Blatz, J.A., Cui, Y.J. and Oldecop, L. (2008), "Vapour equilibrium and osmotic technique for suction control", Geotech. Geol. Eng., 26(6), 661-673. https://doi.org/10.1007/s10706-008-9196-1.
  8. Blatz, J. and Graham, J. (2000), "A system for controlled suction in triaxial tests", Géotechnique, 50(4), 465-469. https://doi.org/10.1680/geot.2000.50.4.465.
  9. Cardoso, R., Sarapajevaite, G., Korsun, O., Cardoso, S. and Ilharco, L. (2017), "Microfabricated sol-gel relative humidity sensors for soil suction measurement during laboratory tests", Can. Geotech. J., 54(8), 1176-1183. https://doi.org/10.1139/cgj-2016-0419.
  10. Chehade, H.A., Dias, D., Sadek, M., Jenck, O. and Chehade, F.H. (2020), "Upper bound seismic limit analysis of geosynthetic-reinforced unsaturated soil walls", Geotext. Geomembranes, 48(4), 419-430. https://doi.org/10.1016/j.geotexmem.2020.02.001.
  11. Cheng, W.Q., Yang, Z., Hattab, M., Bian, H., Bouchemella, S. and Fleureau, J.M. (2021), "Free desiccation shrinkage process in clayey soils", Eur. J. Environ. Civil Eng., 26(13), 6398-6423. https://doi.org/10.1080/19648189.2021.1942223.
  12. Delage, P. and Cui, Y. J. (2008), "An evaluation of the osmotic method of controlling suction", Geomech. Geoeng., 3(1), 1-11. https://doi.org/10.1080/17486020701868379.
  13. Delage, P. (2002), Experimental unsaturated soil mechanics, Proceedings of the 3rd Int. Conf. on Unsaturated Soils - UNSAT, Recife, Brazil.
  14. Delage, P., Romero, E. and Tarantino, A. (2008), "Recent developments in the techniques of controlling and measuring suction in unsaturated soils", In Keynote Lecture, Proceedings of the 1st Eur. Conf. on Unsaturated Soils, Durham.
  15. Derfouf, F.E.M., Abou-Bekr, N., Taibi, S., Allal, M.A. and Benchouk, A. (2020), "Hydromechanical behaviour of a marl on controlled suction oedometer path", Eur. J. Environ. Civil Eng., 24(4), 500-519. https://doi.org/10.1080/19648189.2017.1399293.
  16. Estabragh, A.R. and Javadi, A.A. (2012), "Effect of suction on volume change and shear behaviour of an overconsolidated unsaturated silty soil", Geomech. Eng., 4(1), 55-65. https://doi.org/10.12989/gae.2012.4.1.055.
  17. Fan, S.Y., Song, Z.P., Zhang, Y.W. and Liu, N.F. (2020), "Case study of the effect of rainfall infiltration on a tunnel underlying the roadbed slope with weak inter-layer", KSCE J. Civil Eng., 24(5), 1607-1619. https://doi.org/10.1007/s12205-020-1165-0.
  18. Ferrari, A., Minardi, A., Ewy, R. and Laloui, L. (2018), "Gas shales testing in controlled partially saturated conditions", Int. J. Rock Mech. Min. Sci., 107, 110-119, https://doi.org/10.1016/j.ijrmms.2018.05.003.
  19. Fleureau, JM., Kheirbek-Saoud, S., Soemitro, R. and Taibi, S. (1993), "Behaviour of clayey soils on drying-wetting paths", Can. Geotech. J., 30(2), 287-296, https://doi.org/10.1139/t93-024.
  20. Fleureau, J.M., Hadiwardoyo, S. and Correia, A.G. (2003), "Generalised effective stress analysis of strength and small strains behaviour of a silty sand, from dry to saturated state", Soils Found., 43(4), 21-33. https://doi.org/10.3208/sandf.43.4_21.
  21. Fondjo, A.A., Theron, E. and Ray, R.P. (2020), "Assessment of various methods to measure the soil suction", Int. J. Innov. Tech. Explor. Eng., 9(12), 171-184. https://doi.org/10.35940/ijitee.L7958.1091220.
  22. Fredlund, D.G. and Rahardjo, H. (1993), Soil mechanics for unsaturated soils, John Wiley & Sons.
  23. Gachet, P., Geiser, F., Laloui, L. and Vulliet, L. (2007), "Automated digital image processing for volume change measurement in triaxial cells", Geotech. Test. J., 30(2), 98-103. https://doi.org/10.1520/GTJ100309.
  24. Gao, Q.F., Hattab, M., Jrad, M., Fleureau, J.M. and Hicher, P.Y. (2020), "Microstructural organization of remoulded clays in relation with dilatancy/contractancy phenomena", Acta Geotechnica, 15(1), 223-243. https://doi.org/10.1007/s11440-019-00876-w.
  25. Garakani, A.A., Sadeghi, H., Saheb, S. and Lamei, A. (2020), "Bearing capacity of shallow foundations on unsaturated soils: analytical approach with 3D numerical simulations and experimental validations", Int. J. Geomech., 20(3), 04019181, https://doi.org/10.1061/(ASCE)GM.1943-5622.0001589.
  26. Goual, I., Goual, M.S., Taibi, S. and Abou-Bekr, N. (2011), "Behaviour of unsaturated tuff- calcareous sand mixture on drying-wetting and triaxial paths", Geomech. Eng., 3(4), 267-284. https://doi.org/10.12989/gae.2011.3.4.267.
  27. Hattab, M. and Hicher, P.Y. (2004), "Dilating behaviour of overconsolidated clay", Soils Found., 44(4), 27-40. https://doi.org/10.3208/sandf.44.4_27.
  28. Hossain, M.A. and Yin, J.H. (2010), "Shear strength and dilative characteristics of an unsaturated compacted completely decomposed granite soil", Can. Geotech. J., 47(10), 1112-1126. https://doi.org/10.1139/T10-015.
  29. Jiang, T., Zhao, J., Zhang, J., Wang, L., Song, C. and Zhai, T. (2021), "Hydromechanical behavior and prediction of unsaturated loess over a wide suction range", Geomechanics Eng., 26(3), 275-288. https://doi.org/10.12989/gae.2021.26.3.275.
  30. Kumar, A., Azizi, A. and Toll, D.G. (2022), "Application of suction monitoring for cyclic triaxial testing of compacted soils", J. Geotech. Geoenviron. Eng., 148(4), 04022009. https://doi.org/10.1061/(ASCE)GT.1943-5606.000276.
  31. Laloui, L., Péron, H., Geiser, F., Rifa'i, A. and Vulliet, L. (2006), "Advances in volume measurement in unsaturated soil triaxial tests", Soils Found., 46(3), 341-349. https://doi.org/10.3208/sandf.46.341.
  32. Lin, H.D., Wang, C.C. and Wang, X.H. (2018), "A simplified method to estimate the total cohesion of unsaturated soil using an UC test", Geomech. Eng., 16(6), 599-608. https://doi.org/10.12989/gae.2018.16.6.599.
  33. Mendes, J. and Toll, D.G. (2016), "Influence of initial water content on the mechanical behavior of unsaturated sandy clay soil", Int. J. Geomechanics, 16(6), D4016005, https://doi.org/10.1061/(ASCE)GM.1943-5622.0000594.
  34. Ng, C.W., Zhan, L.T. and Cui, Y.J. (2002), "A new simple system for measuring volume changes in unsaturated soils", Can. Geotech. J., 39(3), 757-764. https://doi.org/10.1139/t02-015.
  35. Ng, C.W.W., Cui, Y., Rui, C. and Delage, P. (2007), "The axis-translation and osmotic techniques in shear testing of unsaturated soils: a comparison", Soils Found., 47(4), 675-684. https://doi.org/10.3208/sandf.47.675.
  36. Pan, H., Qing, Y. and Pei-yong, L. (2010), "Direct and indirect measurement of soil suction in the laboratory", Electron. J. Geotech. Eng., 15(3), 1-14.
  37. Rifa'i, A., Laloui, L. and Vulliet, L. (2002), "Volume measurement in unsaturated triaxial test using liquid variation liquid variation and image processing", Proceedings of the 3rd Int. Conf. on Unsaturated Soils - UNSAT, Recife, Brazil.
  38. Shao, L.T., Liu, X., Guo, X.X., Liu, Y. L., Huang, C. and Xue, J. (2020), "Digital image technique for deformation measurement of unsaturated soil specimen in triaxial test", Unsaturated Soils: Research & Applications, CRC Press, 1623-1629.
  39. Sivakumar, V., Kodikara, J., O'hagan, R., Hughes, D., Cairns, P., and McKinley, J.D. (2013), "Effects of confining pressure and water content on performance of unsaturated compacted clay under repeated loading", Géotechnique, 63(8), 628-640. https://doi.org/10.1680/geot.10.P.103.
  40. Sreedeep, S. and Singh, D.N. (2011), "Critical review of the methodologies employed for soil suction measurement", Int. J. Geomech., 11(2), 99-104. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000022.
  41. Wei, X., Hattab, M., Taibi, S., Bicalho, K.V., Xu, L., and Fleureau, J.M. (2021), "Crack development and coalescence process in drying clayey loess", Geomech. Eng., 25(6), 535-552. https://doi.org/10.12989/gae.2021.25.6.535.
  42. Zhao, D., Gao, Q.F., Hattab, M., Hicher, P.Y. and Yin, Z.Y. (2020), "Microstructural evolution of remolded clay related to creep", Transport. Geotech., 24, 100367, https://doi.org/10.1016/j.trgeo.2020.100367.
  43. Zhao, D., Hattab, M., Yin, Z.Y. and Hicher, P.Y. (2019), "Dilative behavior of kaolinite under drained creep condition", Acta Geotechnica, 14(4), 1003-1019. https://doi.org/10.1007/s11440-018-0686-x.
  44. Zhou, N.Q., Zhao, S., Song, W. and Otani, J. (2014), "Contaminant migration in unsaturated porous media using X-ray computerized tomography (CT)", Water Sci. Technol., 69(5), 953-959. https://doi.org/10.2166/wst.2013.801.