References
- Abo-Dahab, S.M. and Lofty, Kh. (2017), "Two-temperature plane strain problem in a semiconducting medium under photothermal theory", Wave. Random Complex Media, 27(1), 67-91. https://doi.org/10.1080/17455030.2016.1203080.
- Bajpai, A. and Sharma, P.K. (2021), "Impact of two temperatures on a generalized thermoelastic plate with thermal loading", Appl. Anal., Comput. Math. Model. Eng., 897, 69-81. https://doi.org/10.1007/978-981-19-1824-7_5.
- Chen, P.J. and Gurtin, M.E. (1968), "On a theory of heat conduction involving two temperatures", Zeitschrift f Angew. Math. Phys. (Z.A.M.P), 19(4), 614-627. https://doi.org/10.1007/BF01594969
- Dhaliwal, R.S. and Singh, A. (1980), Dynamic Coupled Thermoelasticity, Hindustan Publication Corporation, New Delhi, India.
- El-Bary, A.A. (2021), "Hyperbolic two-temperature generalized thermoelasticity with fractional order strain of solid cylinder", J. Eng. Therm. Sci., 1(2), 30-42. https://doi.org/10.21595/jets.2021.21969.
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
- Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2015), "On thermo-viscoelasticity with variable thermal conductivity and fractional-order heat transfer", Int. J. Thermophys., 36(7), 1684-1697. https://doi.org/10.1007/s10765-015-1873-8.
- Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A. and Fayik, M.A. (2013), "Fractional calculus in one-dimensional isotropic thermo-viscoelasticity", C.R. Mecanique, 341(7), 553-566. https://doi.org/10.1016/j.crme.2013.04.001.
- Fernaindez, J.R. and Quintanilla, R. (2021), "Two-temperatures thermo-porous-elasticity with microtemperatures", Appl. Math. Lett., 111, 106628. https://doi.org/10.1016/j.aml.2020.106628.
- Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast., 2, 1-7. https://doi.org/10.1007/BF00045689.
- Kaushal, S., Kumar, R. and Miglani, A. (2010), "Response of frequency domain in generalized thermoelasticity with two temperatures", Int. J. Eng. Phys. Thermophys., 83(5), 1080-1088. https://doi.org/10.1007/s10891-010-0433-0.
- Kaushal, S., Kumar, R. and Miglani, A. (2011), "Wave propagation in temperatures rate dependent thermoelasticity with two temperatures", Math. Sci., 5,125-146.
- Kumar, R., Ghangas, S. and Vashishth, A.K. (2021), "Fundamental and plane wave solutions in non-local bio-thermoelasticity diffusion theory", Couple. Syst. Mech., 10(1), 21-38. https://doi.org/10.12989/csm.2021.10.1.021.
- Kumar, R., Kaushal, S. and Sharma, G. (2022), "Mathematical model for the deformation in a modified Green-Lindsay thermoelastic medium with nonlocal and two-temperature effects", J. Appl. Mech. Tech. Phys., 63, 448-457. https://doi.org/10.1134/S0021894422030099.
- Kumar, R., Kaushal, S., Reen, L.S. and Garg, S.K. (2016), "Deformation due to various sources in transversely isotropic thermoelastic material without energy dissipation and with two-temperature", Mater. Phys. Mech., 27(1), 22-31.
- Lazar, M. and Agiasofitou, E. (2011), "Screw dislocation in nonlocal anisotropic elasticity", Int. J. Eng. Sci., 49(12), 1404-1414. https://doi.org/10.1016/j.ijengsci.2011.02.011.
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
- Luo, P., Li, X. and Tian, X. (2021), "Nonlocal thermoelasticity and its application in thermoelastic problem with temperature-dependent thermal conductivity", Eur. J. Mech.-A/Solid., 87, 104204. https://doi.org/10.1016/j.euromechsol.2020.104204.
- Mahdy, A.M.S., Lotfy, Kh., El-Bary, A.A. and Sarhan, H.H. (2021), "Effect of rotation and magnetic field on a numerical-refined heat conduction in a semiconductor medium during photo-excitation processes", Eur. Phys. J. Plus, 136, 553. https://doi.org/10.1140/epjp/s13360-021-01552-3.
- Mahdy, A.M.S., Lotfy, Kh., El-Bary, A.A. and Tayel, I.M. (2021), "Variable thermal conductivity and hyperbolic two-temperature theory during magneto-photothermal theory of semiconductor induced by laser pulses", Eur. Phys. J. Plus, 136, 1-21. https://doi.org/10.1140/epjp/s13360-021-01633-3.
- Quintanilla, R. (2018), "Some qualitative results for a modification of the Green-Lindsay thermoelasticity", Meccanica, 53(14), 3607-3613. https://doi.org/10.1007/s11012-018-0889-0.
- Sarkar, N. and De, S. (2020), "Waves in magneto-thermoelastic solids under modified Green-Lindsay model", J. Therm. Stress., 43(5), 594-611. https://doi.org/10.1080/01495739.2020.1712286.
- Shakeriaski, F., Ghodrat, M., Diaz, J.E. and Behnia, M. (2020), "Modified Green-Lindsay thermoelasticity wave propagation in elastic materials under thermal shocks", J. Comput. Des. Eng., 8(1), 36-54. https://doi.org/10.1093/jcde/qwaa061.
- Sharma, S. and Khator, S. (2021), "Power generation planning with reserve dispatch and weather uncertainties including penetration of renewable sources", Int. J. Smart Grid Clean Energy, 10(4), 292-303. https://doi.org/10.12720/sgce.10.4.292-303.
- Sharma, S. and Khator, S. (2022), "Micro-Grid planning with aggregator's role in the renewable inclusive prosumer market", J. Power Energy Eng., 10(4), 47-62. https://doi.org/10.4236/jpee.2022.104004.
- Yasein, M., Mabrouk, N., Lotfy, Kh. and EL-Bary, A.A. (2019), "The influence of variable thermal conductivity of semiconductor elastic medium during photothermal excitation subjected to thermal ramp type", Result. Phys., 25(12), 4731-4740. https://doi.org/10.1016/j.rinp.2019.102766.
- Youssef, H.M. (2006), "Theory of two-temperature-generalized thermoelasticity", MA J. Appl. Math., 71(3), 383-390. https://doi.org/10.1093/imamat/hxh101.
- Yu, Y.J., Xue, Z. and Tian, X. (2018), "A modified Green-Lindsay thermoelasticity with strain rate to eliminate the discontinuity", Meccanica, 53, 2543-2554. https://doi.org/10.1007/s11012-018-0843-1.