DOI QR코드

DOI QR Code

Empirical Comparison of the Effects of Online and Offline Recommendation Duration on Purchasing Decisions: Case of Korea Food E-commerce Company

  • Qinglong Li (Department of Big Data Analytics, Kyung Hee University) ;
  • Jaeho Jeong (Department of Business Administration, Kyung Hee University) ;
  • Dongeon Kim (Department of Big Data Analytics, Kyung Hee University) ;
  • Xinzhe Li (Department of Big Data Analytics, Kyung Hee University) ;
  • Ilyoung Choi (Division of Business Administration, Seo Kyeong University) ;
  • Jaekyeong Kim (Department of Big Data Analytics and School of Management, Kyung Hee University)
  • Received : 2023.07.18
  • Accepted : 2023.12.26
  • Published : 2024.03.31

Abstract

Most studies on recommender systems to evaluate recommendation performances focus on offline evaluation methods utilizing past customer transaction records. However, evaluating recommendation performance through real-world stimulation becomes challenging. Moreover, such methods cannot evaluate the duration of the recommendation effect. This study measures the personalized recommendation (stimulus) effect when the product recommendation to customers leads to actual purchases and evaluates the duration of the stimulus personalized recommendation effect leading to purchases. The results revealed a 4.58% improvement in recommendation performance in the online environment compared with that in the offline environment. Furthermore, there is little difference in recommendation performance in offline experiments by period, whereas the recommendation performance declines with time in online experiments.

Keywords

References

  1. Acilar, A. M., and Arslan, A. (2009). A collaborative filtering method based on artificial immune network. Expert Systems with Applications, 36(4), 8324-8332. https://doi.org/10.1016/j.eswa.2008.10.029
  2. Bennett, J., and Lanning, S. (2007). The netflix prize. In Proceedings of KDD Cup and Workshop (p. 35). Association for Computing Machinery.
  3. Bhatti, A., Akram, H., Basit, H. M., Khan, A. U., Raza, S. M., and Naqvi, M. B. (2020). E-commerce trends during COVID-19 Pandemic. International Journal of Future Generation Communication and Networking, 13(2), 1449-1452.
  4. Bobadilla, J., Ortega, F., Hernando, A., and Gutierrez, A. (2013). Recommender systems survey. Knowledge-based Systems, 46, 109-132. https://doi.org/10.1016/j.knosys.2013.03.012
  5. Chen, M., and Liu, P. (2017). Performance evaluation of recommender systems. International Journal of Performability Engineering, 13(8), 1246. https://doi.org/10.1145/3556536
  6. Chen, W. Y., Zhang, D., and Chang, E. Y. (2008). Combinational collaborative filtering for personalized community recommendation. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 115-123). Association for Computing Machinery.
  7. Cho, Y. H., Kim, J. K., and Kim, S. H. (2002). A personalized recommender system based on web usage mining and decision tree induction. Expert Systems with Applications, 23(3), 329-342. https://doi.org/10.1016/S0957-4174(02)00052-0
  8. Choi, I. Y., Oh, M. G., Kim, J. K., and Ryu, Y. U. (2016). Collaborative filtering with facial expressions for online video recommendation. International Journal of Information Management, 36(3), 397-402. https://doi.org/10.1016/j.ijinfomgt.2016.01.005
  9. Choi, Y. K., and Kim, S. K. (2018). A recommendation system for repetitively purchasing items in e-commerce based on collaborative filtering and association rules. Journal of Internet Technology, 19(6), 1691-1698.
  10. Das, A. S., Datar, M., Garg, A., and Rajaram, S. (2007). Google news personalization: scalable online collaborative filtering. In Proceedings of the 16th International Conference on World Wide Web (pp. 271-280). Association for Computing Machinery.
  11. Duong, T. N., Than, V. D., Tran, T. H., Dang, Q. H., Nguyen, D. M., and Pham, H. M. (2018). An effective similarity measure for neighborhood- based collaborative filtering. In Proceedings of 5th NAFOSTED Conference on Information and Computer Science (NICS) (pp. 250-254). IEEE.
  12. Elahi, M., Ricci, F., and Rubens, N. (2016). A survey of active learning in collaborative filtering recommender systems. Computer Science Review, 20, 29-50. https://doi.org/10.1016/j.cosrev.2016.05.002
  13. Fessahaye, F., Perez, L., Zhan, T., Zhang, R., Fossier, C., Markarian, R., Chiu, C., Zhan, J., Gewali, L., and Oh, P. (2019). T-recsys: A novel music recommendation system using deep learning. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics (ICCE) (pp. 1-6). IEEE.
  14. Goldberg, D., Nichols, D., Oki, B. M., and Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61-70. https://doi.org/10.1145/138859.138867
  15. Gopalswamy, S., and Mohamed, S. I. P. (2019). Time adaptive collaborative filtering for movie recommendation. Pertanika Journal of Science and Technology, 27(4), 1783-1802.
  16. Han, J. W., Jo, J. C., Ji, H. S., and Lim, H. S. (2016). A collaborative recommender system for learning courses considering the relevance of a learner's learning skills. Cluster Computing, 19(4), 2273-2284. https://doi.org/10.1007/s10586-016-0670-x
  17. He, X., Chen, T., Kan, M. Y., and Chen, X. (2015). Trirank: Review-aware explainable recommendation by modeling aspects. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management (pp. 1661-1670). Association for Computing Machinery.
  18. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T. S. (2017). Neural collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web (pp. 173-182). International World Wide Web Conferences Steering Committee.
  19. Herlocker, J., Konstan, J. A., and Riedl, J. (2002). An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Information Retrieval, 5(4), 287-310. https://doi.org/10.1023/A:1020443909834
  20. Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS), 22(1), 5-53. https://doi.org/10.1145/963770.963772
  21. Hug, N. (2020). Surprise: A Python library for recommender systems. Journal of Open Source Software, 5(52), 2174.
  22. Jalili, M., Ahmadian, S., Izadi, M., Moradi, P., and Salehi, M. (2018). Evaluating collaborative filtering recommender algorithms: a survey. IEEE Access, 6, 74003-74024. https://doi.org/10.1109/ACCESS.2018.2883742
  23. Jiang, S., Qian, X., Shen, J., Fu, Y., and Mei, T. (2015). Author topic model-based collaborative filtering for personalized POI recommendations. IEEE Transactions on Multimedia, 17(6), 907-918. https://doi.org/10.1109/TMM.2015.2417506
  24. Kim, H. K., Oh, H. Y., Gu, J. C., and Kim, J. K. (2011a). Commenders: A recommendation procedure for online book communities. Electronic Commerce Research and Applications, 10(5), 501-509.
  25. Kim, H. K., Ryu, Y. U., Cho, Y., and Kim, J. K. (2011b). Customer-driven content recommendation over a network of customers. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 42(1), 48-56. https://doi.org/10.1109/TSMCA.2011.2147306
  26. Kim, J. K., Kim, H. K., and Cho, Y. H. (2008). A user-oriented contents recommendation system in peer-to-peer architecture. Expert Systems with Applications, 34(1), 300-312. https://doi.org/10.1016/j.eswa.2006.09.034
  27. Kim, J. K., Kim, H. K., Oh, H. Y., and Ryu, Y. U. (2010). A group recommendation system for online communities. International Journal of Information Management, 30(3), 212-219. https://doi.org/10.1016/j.ijinfomgt.2009.09.006
  28. Lee, H. I., Choi, I. Y., Moon, H. S., and Kim, J. K. (2020). A multi-period product recommender system in online food market based on recurrent neural networks. Sustainability, 12(3), 969. https://doi.org/10.3390/su12030969
  29. Li, N., Guo, B., Liu, Y., Jing, Y., Ouyang, Y., and Yu, Z. (2018). Commercial site recommendation based on neural collaborative filtering. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers (pp. 196-201). Association for Computing Machinery.
  30. Li, Q., Jang, D., Kim, D., and Kim, J. (2023). Restaurant recommendation model using textual information to estimate consumer preference: evidence from an online restaurant platform. Journal of Hospitality and Tourism Technology, 14(5), 857-877. https://doi.org/10.1108/JHTT-01-2023-0019
  31. Li, Q., Li, X., Lee, B., and Kim, J. (2021). A hybrid CNN-based review helpfulness filtering model for improving e-commerce recommendation Service. Applied Sciences, 11(18), 8613. https://doi.org/10.3390/app11188613
  32. Linden, G., Smith, B., and York, J. (2003). Amazon. com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7(1), 76-80. https://doi.org/10.1109/MIC.2003.1167344
  33. Liu, D. R., Lai, C. H., and Lee, W. J. (2009). A hybrid of sequential rules and collaborative filtering for product recommendation. Information Sciences, 179(20), 3505-3519. https://doi.org/10.1109/CEC-EEE.2007.6
  34. Lu, J., Wu, D., Mao, M., Wang, W., and Zhang, G. (2015). Recommender system application developments: a survey. Decision Support Systems, 74, 12-32. https://doi.org/10.1016/j.dss.2015.03.008
  35. Mendoza, M., and Torres, N. (2020). Evaluating content novelty in recommender systems. Journal of Intelligent Information Systems, 54(2), 297-316. https://doi.org/10.1007/s10844-019-00548-x
  36. Moon, H. S., Ryu, Y. U., and Kim, J. K. (2019). Enhanced collaborative filtering: A product life cycle approach. Journal of Electronic Commerce Research, 20(3), 155-168.
  37. Mu, R. (2018). A survey of recommender systems based on deep learning. IEEE Access, 6, 69009-69022. https://doi.org/10.1109/ACCESS.2018.2880197
  38. Na, H., and Nam, K. (2020). Application of diversity of recommender system according to user preference change. Journal of Intelligence and Information Systems, 26(4), 67-86. https://doi.org/10.1007/978-3-319-07293-7_66
  39. Ortega, F., Hernando, A., Bobadilla, J., and Kang, J. H. (2016). Recommending items to group of users using matrix factorization based collaborative filtering. Information Sciences, 345, 313-324. https://doi.org/10.1016/j.ins.2016.01.083
  40. Park, J., Li, X., Li, Q., and Kim, J. (2023). Impact on recommendation performance of online review helpfulness and consistency. Data Technologies and Applications, 57(2), 199-221. https://doi.org/10.1108/DTA-04-2022-0172
  41. Ren, Z., Ning, X., Lan, A. S., and Rangwala, H. (2019). Grade prediction with neural collaborative filtering. In Proceedings of 2019 IEEE International Conference on Data Science and Advanced Analytics (pp. 1-10). IEEE.
  42. Rha, J. Y., Chun, Y., Lee, B., Ko, J., Jang, J., and Won, H. (2022). Consumers' attitudes and purchase behavior of HMR (Home Meal Replacement) using locally sourced food. Journal of Food Products Marketing, 28(2), 104-117. https://doi.org/10.1080/10454446.2022.2048767
  43. Shih, D. H., Yen, D. C., Lin, H. C., and Shih, M. H. (2011). An implementation and evaluation of recommender systems for traveling abroad. Expert Systems with Applications, 38(12), 15344-15355. https://doi.org/10.1016/j.eswa.2011.06.030
  44. Srifi, M., Oussous, A., Ait Lahcen, A., and Mouline, S. (2020). Recommender systems based on collaborative filtering using review texts-a survey. Information, 11(6), 317. https://doi.org/10.3390/info11060317
  45. Yin, H., Cui, B., Sun, Y., Hu, Z., and Chen, L. (2014). LCARS: A spatial item recommender system. ACM Transactions on Information Systems (TOIS), 32(3), 1-37. https://doi.org/10.1145/2629461
  46. Zhang, S., Yao, L., Sun, A., and Tay, Y. (2019). Deep learning based recommender system: A survey and new perspectives. ACM Computing Surveys (CSUR), 52(1), 1-38. https://doi.org/10.1145/3285029