DOI QR코드

DOI QR Code

The Trends in Methanol Oxidation Reaction Mechanisms and Electrochemical Oxidation Catalysts

메탄올 산화 반응 메커니즘과 전기화학 산화 촉매 최신 동향

  • Sungyool Bong (Department of Chemistry Education, Kongju National University)
  • 봉성율 (공주대학교 화학교육과)
  • Received : 2024.02.26
  • Accepted : 2024.03.26
  • Published : 2024.04.10

Abstract

Methane is an abundant and renewable hydrocarbon, but it causes global warming as a greenhouse gas. Therefore, methods to convert methane into useful chemicals or energy sources are needed. Methanol is a simple and abundant chemical that can be synthesized by the partial oxidation of methane. Methanol can be used as a chemical feedstock or a transportation fuel, as well as a fuel for low-temperature fuel cells. However, the electrochemical oxidation of methanol is a complex and multi-step reaction. To understand and optimize this reaction, new electrocatalysts and reaction mechanisms are required. This review discusses the methanol oxidation reaction mechanism, recent research trends, and future research directions.

메탄은 풍부하고 재생 가능한 탄화수소이지만, 온실가스로서 지구 온난화를 발생시킨다. 따라서 메탄을 유용한 화학물질이나 에너지원으로의 변환이 필요하다. 메탄올은 메탄의 부분 산화 반응을 통해 합성할 수 있는 간단하고 풍부한화학물질이다. 메탄올은 화학 공급 원료나 수송 연료로 사용될 뿐만 아니라, 저온 연료 전지의 연료로도 적합하다. 그러나 메탄올의 전기화학 산화는 복잡하고 다단계의 반응이므로, 이 반응을 이해하고 최적화하기 위해서는 새로운 전기화학촉매와 반응 메커니즘의 연구가 필요하다. 본 총설에서는 메탄올 산화 반응 메커니즘 및 최근 연구 동향과 향후 연구 방향을 고찰하였다.

Keywords

References

  1. A. Caballero and P. J. Perez, Methane as raw material in synthetic chemistry: the final frontier, Chem. Soc. Rev., 42, 8809-8820 (2013).  https://doi.org/10.1039/c3cs60120j
  2. S. Bakkaloglu, J. Cooper, and A. Hawkes, Methane emissions along biomethane and biogas supply chains are underestimated, One Earth, 5, 724-736 (2022). 
  3. G. J. MacDonald, Role of methane clathrates in past and future climates, Clim. Change, 16, 247-281 (1990).  https://doi.org/10.1007/BF00144504
  4. N. F. Dummer, D. J. Willock, Q. He, M. J. Howard, R. J. Lewis, G. Qi, S. H. Taylor, J. Xu, D. Bethell, C. J. Kiely, and G. J. Hutchings, Methane oxidation to methanol, Chem. Rev., 123, 6359-6411 (2023).  https://doi.org/10.1021/acs.chemrev.2c00439
  5. L. Yuliati and H. Yoshida, Photocatalytic conversion of methane, Chem. Soc. Rev., 37, 1592-1602 (2008).  https://doi.org/10.1039/b710575b
  6. H. Schwarz, Chemistry with methane: Concepts rather than recipes, Angew. Chem. Int. Ed., 50, 10096-10115 (2011).  https://doi.org/10.1002/anie.201006424
  7. Innovation Outlook: Renewable Methanol (2021), https://www.irena.org/publications/2021/Jan/Innovation-Outlook-Renewable-Methanol (accessed February 26, 2024). 
  8. J. N. Tiwari, R. N. Tiwari, G. Singh, and K. S. Kim, Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells, Nano Energy, 2, 553-578 (2013).  https://doi.org/10.1016/j.nanoen.2013.06.009
  9. J. Li, R. Wei, X. Wang, Y. Zuo, X. Han, J. Arbiol, J. Llorca, Y. Yang, A. Cabot, and C. Cui, Selective methanol-to-formate electrocatalytic conversion on branched nickel carbide, Angew. Chem. Int. Ed., 59, 20826-20830 (2020).  https://doi.org/10.1002/anie.202004301
  10. J. Li, C. Xing, Y. Zhang, T. Zhang, M. C. Spadaro, Q. Wu, Y. Yi, S. He, J. Llorca, J. Arbiol, A. Cabot, and C. Cui, Nickel iron diselenide for highly efficient and selective electrocatalytic conversion of methanol to formate, Small, 17, 2006623 (2021). 
  11. Z. Liang, D. Jiang, X. Wang, M. Shakouri, T. Zhang, Z. Li, P. Tang, J. Llorca, L. Liu, Y. Yuan, M. Heggen, R. E. DuninBorkowski, J. R. Morante, A. Cabot, and J. Arbiol, Molecular engineering to tune the ligand environment of atomically dispersed nickel for efficient alcohol electrochemical oxidation, Adv. Funct. Mater., 31, 2106349 (2021). 
  12. Y. Qi, Y. Zhang, L. Yang, Y. Zhao, Y. Zhu, H. Jiang, and C. Li, Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation, Nat. Commun., 13, 4602 (2022). 
  13. J. Hao, J. Liu, D. Wu, M. Chen, Y. Liang, Q. Wang, L. Wang, X.-Z. Fu, and J.-L. Luo, In situ facile fabrication of Ni(OH)2 nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution, Appl. Catal. B Environ., 281, 119510 (2021). 
  14. B. D. McNicol, D. A. J. Rand, and K. R. Williams, Direct methanol-air fuel cells for road transportation, J. Power Sources, 83, 15-31 (1999).  https://doi.org/10.1016/S0378-7753(99)00244-X
  15. F. Tavani, A. Tofoni, and P. D'Angelo, Exploring the methane to methanol oxidation over iron and copper sites in metal-organic frameworks, Catalysts, 13, 1338 (2023). 
  16. Y. Zuo, W. Sheng, W. Tao, and Z. Li, Direct methanol fuel cells system-A review of dual-role electrocatalysts for oxygen reduction and methanol oxidation, J. Mater. Sci. Technol., 114, 29-41 (2022).  https://doi.org/10.1016/j.jmst.2021.10.031
  17. J. Wang, B. Zhang, W. Guo, L. Wang, J. Chen, H. Pan, and W. Sun, Toward electrocatalytic methanol oxidation reaction: Longstanding debates and emerging catalysts, Adv. Mater., 35, 2211099 (2023). 
  18. O. A. Petrii, The progress in understanding the mechanisms of methanol and formic acid electrooxidation on platinum group metals (a review), Russ. J. Electrochem., 55, 1-33 (2019).  https://doi.org/10.1134/S1023193519010129
  19. T. Yajima, H. Uchida, and M. Watanabe, In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy, J. Phys. Chem. B, 108, 2654-2659 (2004).  https://doi.org/10.1021/jp037215q
  20. H.-X. Liu, N. Tian, M. P. Brandon, Z.-Y. Zhou, J.-L. Lin, C. Hardacre, W.-F. Lin, and S.-G. Sun, Tetrahexahedral Pt nanocrystal catalysts decorated with Ru adatoms and their enhanced activity in methanol electrooxidation, ACS Catal., 2, 708-715 (2012).  https://doi.org/10.1021/cs200686a
  21. T. Frelink, W. Visscher, and J. A. R. van Veen, The effect of Sn on Pt/C catalysts for the methanol electro-oxidation, Electrochim. Acta, 39, 1871-1875 (1994).  https://doi.org/10.1016/0013-4686(94)85177-8
  22. D.-J. Chen and Y. J. Tong, Irrelevance of carbon monoxide poisoning in the methanol oxidation reaction on a PtRu electrocatalyst, Angew. Chem. Int. Ed., 54, 9394-9398 (2015).  https://doi.org/10.1002/anie.201503917
  23. Y.-W. Zhou, Y.-F. Chen, K. Jiang, Z. Liu, Z.-J. Mao, W.-Y. Zhang, W.-F. Lin, and W.-B. Cai, Probing the enhanced methanol electrooxidation mechanism on platinum-metal oxide catalyst, Appl. Catal. B Environ., 280, 119393 (2021). 
  24. Y. Zhou, Q. Wang, X. Tian, and L. Feng, Efficient bifunctional catalysts of CoSe/N-doped carbon nanospheres supported Pt nanoparticles for methanol electrolysis of hydrogen generation, Nano Res., 15, 8936-8945 (2022). 
  25. F. Kong, X. Liu, Y. Song, Z. Qian, J. Li, L. Zhang, G. Yin, J. Wang, D. Su, and X. Sun, Selectively coupling Ru single atoms to PtNi concavities for high-performance methanol oxidation via d-band center regulation, Angew. Chem. Int. Ed., 61, e202207524 (2022). 
  26. F. Amouzad and K. Zarei, Layer-by-layer electrochemical assembly of Pt/phosphomolybdic acid/poly(diphenylamine)/PGE for electrocatalytic oxidation of methanol, J. Electron. Mater., 49, 3583- 3590 (2020).  https://doi.org/10.1007/s11664-020-08054-5
  27. W. Liao, S. Zhou, Z. Wang, F. Liu, J. Cao, and Q. Wang, Composition-controlled effects of Pb content in PtPbRu trimetallic nanoparticles on the electrocatalytic oxidation performance of methanol, Fuel, 308, 122073 (2022). 
  28. X. Yang, Q. Wang, S. Qing, Z. Gao, X. Tong, and N. Yang, Modulating electronic structure of an Au-nanorod-core-PdPt-alloy-shell catalyst for efficient alcohol electro-oxidation, Adv. Energy Mater., 11, 2100812 (2021). 
  29. S. Han, Y. Ma, Q. Yun, A.-L. Wang, Q. Zhu, H. Zhang, C. He, J. Xia, X. Meng, L. Gao, W. Cao, and Q. Lu, The synergy of tensile strain and ligand effect in PtBi nanorings for boosting electrocatalytic alcohol oxidation, Adv. Funct. Mater., 32, 2208760 (2022). 
  30. Q. Feng, S. Zhao, D. He, S. Tian, L. Gu, X. Wen, C. Chen, Q. Peng, D. Wang, and Y. Li, Strain engineering to enhance the electro-oxidation performance of atomic-layer Pt on intermetallic Pt3Ga, J. Am. Chem. Soc., 140, 2773-2776 (2018).  https://doi.org/10.1021/jacs.7b13612
  31. M. Li, Z. Zhao, W. Zhang, M. Luo, L. Tao, Y. Sun, Z. Xia, Y. Chao, K. Yin, Q. Zhang, L. Gu, W. Yang, Y. Yu, G. Lu, and S. Guo, Sub-monolayer YOx/MoOx on ultrathin Pt nanowires boosts alcohol oxidation electrocatalysis, Adv. Mater., 33, 2103762 (2021). 
  32. T.-J. Wang, F.-M. Li, and H. Huang, S.-W. Yin, P. Chen, P.-J. Jin, and Y. Chen, Porous Pd-PdO nanotubes for methanol electro-oxidation, Adv. Funct. Mater., 30, 2000534 (2020). 
  33. H. Li, Y. Han, H. Zhao, W. Qi, D. Zhang, Y. Yu, W. Cai, S. Li, J. Lai, B. Huang, and L. Wang, Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis, Nat. Commun., 11, 5437 (2020). 
  34. W. Chen, S. Luo, M. Sun, X. Wu, Y. Zhou, Y. Liao, M. Tang, X. Fan, B. Huang, and Z. Quan, High-entropy intermetallic ptrhbisnsb nanoplates for highly efficient alcohol oxidation electrocatalysis, Adv. Mater., 34, 2206276 (2022). 
  35. M. Li, K. Duanmu, C. Wan, T. Cheng, L. Zhang, S. Dai, W. Chen, Z. Zhao, P. Li, H. Fei, Y. Zhu, R. Yu, J. Luo, K. Zang, Z. Lin, M. Ding, J. Huang, H. Sun, J. Guo, X. Pan, W. A. Goddard, P. Sautet, Y. Huang, and X. Duan, Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis, Nat. Catal., 2, 495-503 (2019).  https://doi.org/10.1038/s41929-019-0279-6
  36. L. Chen, X. Liang, D. Wang, Z. Yang, C.-T. He, W. Zhao, J. Pei, and Y. Xue, Platinum-ruthenium single atom alloy as a bifunctional electrocatalyst toward methanol and hydrogen oxidation reactions, ACS Appl. Mater. Interfaces, 14, 27814-27822 (2022).  https://doi.org/10.1021/acsami.2c02905
  37. L. Tao, Y. Shi, Y.-C. Huang, R. Chen, Y. Zhang, J. Huo, Y. Zou, G. Yu, J. Luo, C.-L. Dong, and S. Wang, Interface engineering of Pt and CeO2 nanorods with unique interaction for methanol oxidation, Nano Energy, 53, 604-612 (2018).  https://doi.org/10.1016/j.nanoen.2018.09.013
  38. J. Ruan, Y. Chen, G. Zhao, P. Li, B. Zhang, Y. Jiang, T. Ma, H. Pan, S. X. Dou, and W. Sun, Cobalt single atoms enabling efficient methanol oxidation reaction on platinum anchored on nitrogen-doped carbon, Small, 18, 2107067 (2022). 
  39. H. Pan, Z. Jiang, Z. Zuo, F. He, F. Wang, L. Li, Q. Chang, B. Guan, and Y. Li, Proton selective anode nanochannel for efficient methanol utilization, Nano Today, 39, 101213 (2021). 
  40. L. Hui, Y. Xue, C. Xing, Y. Liu, Y. Du, Y. Fang, H. Yu, B. Huang, and Y. Li, Highly loaded independent Pt0  atoms on graphdiyne for pH-general methanol oxidation reaction, Adv. Sci., 9, 2104991 (2022). 
  41. C. Yang, Q. Jiang, H. Huang, H. He, L. Yang, and W. Li, Polyelectrolyte-induced stereoassembly of grain boundary-enriched platinum nanoworms on Ti3C2Tx MXene nanosheets for efficient methanol oxidation, ACS Appl. Mater. Interfaces, 12, 23822-23830 (2020).  https://doi.org/10.1021/acsami.0c02806
  42. J. Zhu, L. Xia, R. Yu, R. Lu, J. Li, R. He, Y. Wu, W. Zhang, X. Hong, W. Chen, Y. Zhao, L. Zhou, L. Mai, and Z. Wang, Ultrahigh stable methanol oxidation enabled by a high hydroxyl concentration on Pt clusters/MXene interfaces, J. Am. Chem. Soc., 144, 15529-15538 (2022).  https://doi.org/10.1021/jacs.2c03982
  43. Z. Lang, Z. Zhuang, S. Li, L. Xia, Y. Zhao, Y. Zhao, C. Han, and L. Zhou, MXene surface terminations enable strong metal-support interactions for efficient methanol oxidation on palladium, ACS Appl. Mater. Interfaces, 12, 2400-2406 (2020).  https://doi.org/10.1021/acsami.9b17088
  44. W. Zhang, Q. Yao, G. Jiang, C. Li, Y. Fu, X. Wang, A. Yu, and Z. Chen, Molecular trapping strategy to stabilize subnanometric Pt clusters for highly active electrocatalysis, ACS Catal., 9, 11603-11613 (2019).  https://doi.org/10.1021/acscatal.9b02987
  45. X. Wang, M. Xie, F. Lyu, Y.-M. Yiu, Z. Wang, J. Chen, L.-Y. Chang, Y. Xia, Q. Zhong, M. Chu, H. Yang, T. Cheng, T.-K. Sham, and Q. Zhang, Bismuth oxyhydroxide-Pt inverse interface for enhanced methanol electrooxidation performance, Nano Lett., 20, 7751-7759 (2020).  https://doi.org/10.1021/acs.nanolett.0c03340
  46. Z. Chen, Y. Liu, C. Liu, J. Zhang, Y. Chen, W. Hu, and Y. Deng, Engineering the metal/oxide interface of Pd nanowire@CuOx electrocatalysts for efficient alcohol oxidation reaction, Small, 16, 1904964 (2020). 
  47. Z. Zhang, J. Liu, J. Wang, Q. Wang, Y. Wang, K. Wang, Z. Wang, M. Gu, Z. Tang, J. Lim, T. Zhao, and F. Ciucci, Singleatom catalyst for high-performance methanol oxidation, Nat. Commun., 12, 5235 (2021). 
  48. A. R. Poerwoprajitno, L. Gloag, J. Watt, S. Cheong, X. Tan, H. Lei, H. A. Tahini, A. Henson, B. Subhash, N. M. Bedford, B. K. Miller, P. B. O'Mara, T. M. Benedetti, D. L. Huber, W. Zhang, S. C. Smith, J. J. Gooding, W. Schuhmann, and R. D. Tilley, A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation, Nat. Catal., 5, 231-237 (2022). https://doi.org/10.1038/s41929-022-00756-9