Acknowledgement
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1061247).
References
- M. H. Jazayeri, T. Aghaie, A. Avan, A. Vatankhah, and M. R. S. Ghaffari, Colorimetric detection based on gold nano particles (GNPs): An easy, fast, inexpensive, low-cost and short time method in detection of analytes (protein, DNA, and ion), Sens. BioSens. Res., 20, 1-8 (2018).
- S. Wang, X. Cui, and G. Fang, Rapid determination of formaldehyde and sulfur dioxide in food products and Chinese herbals, Food Chem., 103, 1487-1493 (2007). https://doi.org/10.1016/j.foodchem.2006.09.023
- A. Choodum and N. Nic Daeid, Rapid and semi-quantitative presumptive tests for opiate drugs, Talanta, 86, 284-292 (2011). https://doi.org/10.1016/j.talanta.2011.09.015
- N. Carlsson, A. Borde, S. Wolfel, B. Akerman, and A. Larsson, Quantification of protein concentration by the Bradford method in the presence of pharmaceutical polymers, Anal. Biochem., 411, 116-121 (2011). https://doi.org/10.1016/j.ab.2010.12.026
- A. Ambrosi, F. Airo, and A. Merkoci, Enhanced gold nanoparticle based ELISA for a breast cancer biomarker, Anal. Chem., 82, 1151-1156 (2010). https://doi.org/10.1021/ac902492c
- R.-J. Yu, W. Ma, X.-Y. Liu, H.-Y. Jin, H.-X. Han, H.-Y. Wang, H. Tian, and Y.-T. Long, Metal-linked immunosorbent assay (MeLISA): the enzyme-free alternative to ELISA for biomarker detection in serum, Theranostics, 6, 1732-1739 (2016). https://doi.org/10.7150/thno.16129
- S. Ramachandran, E. Fu, B. Lutz, and P. Yager, Long-term dry storage of an enzyme-based reagent system for ELISA in point-of-care devices, Analyst, 139, 1456-1462 (2014). https://doi.org/10.1039/C3AN02296J
- Y. Niu, P. Wang, Y. Zhao, and A. Fan, Turn-on colorimetric sensor for ultrasensitive detection of thrombin using fibrinogen-gold nanoparticle conjugate, Analyst, 138, 1475-1482 (2013). https://doi.org/10.1039/c2an36269d
- Y. Kim, Y. R. Choi, B.-G. Kim, and H. B. Na, Recent progress in multiplexed detection of biomarkers based on quantum dots, Appl. Chem. Eng., 33, 451-458 (2022).
- T. V. Dang and M. I. Kim, Diversified component incorporated hybrid nanoflowers: A versatile material for biosensing and biomedical applications, Korean J. Chem. Eng., 40, 302-310 (2023). https://doi.org/10.1007/s11814-022-1292-z
- K. Atacan, N. Guy, and M. Ozacar, Preparation of gold decorated MoS2/NiO nanocomposite in the production of a new electrochemical sensor for ascorbic acid detection, Korean J. Chem. Eng., 39, 2172-2181 (2022). https://doi.org/10.1007/s11814-021-1039-2
- E. Hwang and B. Lee, Synthesis of a fluorescence sensor based on carbon quantum dots for detection of bisphenol A in aqueous solution, Korean J. Chem. Eng., 39, 1324-1332 (2022). https://doi.org/10.1007/s11814-021-0989-8
- E. Jeong, J. Park, H. Kim, S. Lee, Y. Choi, M. Tanaka, and J. Choi, Development of a liquid-based cytology method for detecting cervical cancer cells using functional gold nanorods, Korean J. Chem. Eng., 40, 369-378 (2023). https://doi.org/10.1007/s11814-022-1307-9
- X. Huang and M. A. El-Sayed, Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy, J. Adv. Res., 1, 13-28 (2010). https://doi.org/10.1016/j.jare.2010.02.002
- S. Chotithammakul, M. B. Cortie, and D. Pissuwan, Comparison of single- and mixed-sized gold nanoparticles on lateral flow assay for albumin detection, Biosensors-Basel, 11, 209 (2021).
- S. Cavalera, F. Di Nardo, T. Serra, V. Testa, C. Baggiani, S. Rosati, B. Colitti, L. Brienza, I. Colasanto, C. Nogarol, D. Cosseddu, C. Guiotto, and L. Anfossi, A semi-quantitative visual lateral flow immunoassay for SARS-CoV-2 antibody detection for the follow-up of immune response to vaccination or recovery, J. Mater. Chem. B, 12, 2139-2149 (2024). https://doi.org/10.1039/D3TB02895J
- G. B. L. Silva, L. A. C. Alvarez, F. V. Campos, and M. C. C. Guimaraes, J. P. Oliveira, A sensitive gold nanoparticle-based lateral flow immunoassay for quantitative on-site detection of salmonella in foods, Microchem. J., 199, 109952 (2024).
- S. K. Bikkarolla, K. Venkatesan, Y. R. Revathy, S. Parameswaran, S. Krishnakumar, and D. Dendukuri, The quantitative detection of cystatin-C in patient samples using a colorimetric lateral flow immunoassay, Biosensors-Basel, 14, 30 (2024).
- J. Chen, B. Ren, Z. Wang, Q. Wang, J. Bi, and X. Sun, Multiple isothermal amplification coupled with CRISPR-Cas14a for the naked-eye and colorimetric detection of aflatoxin B1, ACS Appl. Mater. Interfaces, 15, 55423-55432 (2023). https://doi.org/10.1021/acsami.3c13331
- J. Polte, Fundamental growth principles of colloidal metal nanoparticles - A new perspective, CrystEngComm, 17, 6809-6830 (2015). https://doi.org/10.1039/C5CE01014D
- M. K. Hammood, J. N. Jeber, M. A. Khalaf, and H. Abdul Hadi Kharaba, Rapid colorimetric sensing of chlorpromazine HCl antipsychotic through in situ growth of gold nanoparticles, RSC Adv., 14, 2327-2339 (2024). https://doi.org/10.1039/D3RA05516G
- R. P. Edachana, A. Kumaresan, V. Balasubramanian, R. Thiagarajan, B. G. Nair, and S. B. Thekkedath Gopalakrishnan, Paper-based device for the colorimetric assay of bilirubin based on in-situ formation of gold nanoparticles, Microchim. Acta, 187, 60 (2020).
- J. Tang, K. Gao, Q. Ou Q, X. Fu, S.-Q. Man, J. Guo, and Y. Liu, Calculation extinction cross sections and molar attenuation coefficient of small gold nanoparticles and experimental observation of their UV-vis spectral properties, Spectrochim. Acta A, 191, 513-520 (2018). https://doi.org/10.1016/j.saa.2017.10.047
- M.-P. Peng, W. Ma, and Y.-T. Long, Alcohol dehydrogenase-catalyzed gold nanoparticle seed-mediated growth allows reliable detection of disease biomarkers with the naked eye, Anal. Chem., 87, 5891-5896 (2015). https://doi.org/10.1021/acs.analchem.5b00287
- X.-H. Pham, E. Hahm, T. H. Kim, H.-M. Kim, S. H. Lee, Y.-S. Lee, D. H. Jeong, and B.-H. Jun, Enzyme-catalyzed Ag growth on Au nanoparticle-assembled structure for highly sensitive colorimetric immunoassay, Sci. Rep., 8, 6290 (2018).
- T. Ma, K. Liu, X. Yang, J. Yang, M. Pan, and S. Wang, Development of indirect competitive ELISA and visualized multi-color ELISA based on gold nanorods growth for the determination of zearalenone, Foods, 10, 2654 (2021).
- S. Wu, L. Sheng, G. Kou, R. Tian, Y. Ye, W. Wang, J. Sun, J. Ji, J. Shao, Y. Zhang, and X. Sun, Double phage displayed peptides co-targeting-based biosensor with signal enhancement activity for colorimetric detection of staphylococcus aureus, Biosens. Bioelectron., 249, 116005 (2024).
- Y.-J. Chang, Y.-H. Chien, C.-C. Chang, P.-N. Wang, Y.-R. Chen, and Y.-C. Chang, Detection of femtomolar amyloid-β peptides for early-stage identification of Alzheimer's amyloid-β aggregation with functionalized gold nanoparticles, Appl. Mater. Interfaces, 16, 3819-3828 (2024). https://doi.org/10.1021/acsami.3c12750
- Y. Wu, R. Liu, Z. Huang, H. Chen, X. Zhao, Y. Rao, R. Bai, W. Long, J. Yang, W. Lan, and H. Fu, Dual-channel colorimetric sensor based on metal ion mediated color transformation of AuNPs to identify the authenticity and origin of atractylodis macrocephalae rhizoma, Sens. Actuator B-Chem., 400, 134920 (2024).
- F. Liu, C. Zhang, Y. Duan, J. Ma, Y. Wang, and G. Chen, A detection method for prorocentrum minimum by an aptamer-gold nanoparticles based colorimetric assay, J. Hazard. Mater., 449, 131043 (2023).
- L. Lu, R. Yu, and L. Zhang, AFB1 colorimetric aptamer sensor for the detection of AFB1 in ten different kinds of miscellaneous beans based on gold nanoparticles and smartphone imaging, Food Chem., 421, 136205 (2023).
- J. Zhu, B. Yang, H. Hao, L. Peng, and S. Lou, Gold nanoparticles-based colorimetric assay of pesticides: A critical study on aptamer's role and another alternative sensor array strategy, Sens. Actuator B-Chem., 381, 133439 (2023).
- T. Zhao, X. Liang, X. Guo, X. Yang, J. Guo, X. Zhou, X. Huang, W. Zhang, Y. Wang, Z. Liu, Z. Jiang, H. Zhou, and H. Zhou, Smartphone-based colorimetric sensor array using gold nanoparticles for rapid distinguishment of multiple pesticides in real samples, Food Chem., 404, 134768 (2023).
- C. Wenck, D. Leopoldt, M. Habib, J. Hegermann, M. Stiesch, K. Doll-Nikutta, A. Heisterkamp, and M. L. Torres-Mapa, Colorimetric detection of oral bacteria using functionalized gold nanoparticles as a plasmonic biosensor array, Nanoscale Adv., 6, 1447-1459 (2024). https://doi.org/10.1039/D3NA00477E
- S. Yadav and J. Satija, Shape dependent sensing potential of gold nanoparticles in etching based multicolorimetric plasmonic-ELISA, Nanoscale Adv., 4, 3928-3939 (2022). https://doi.org/10.1039/D2NA00266C
- F. Ma, Z. Zhao, J. Huang, Q. Xiong, S. Xu, and Z. Lin, Hybridization chain reaction assisted multicolor immunosensor for sensitively detection of human chorionic gonadotropin, Talanta, 270, 125578 (2024).
- Z. Zhao, Z. Li, J. Huang, X. Deng, F. Jiang, R. P. S. Han, Y. Tao, and S. Xu, A portable intelligent hydrogel platform for multicolor visual detection of HAase, Microchim. Acta, 191, 101 (2024).
- X. Ma, H. Zhang, J. Liu, H. Zhang, X. Hu, Y. Wang, X. Li, and J. Xu, An ultrahigh-resolution multicolor sensing platform via target-induced etching of gold nanorods for multi-colorimetric analysis of trace silver ions, Sens. Actuator B-Chem., 397, 134658 (2023).
- T. Yu, Y. Fu, J. Yi, Z. Wang, J. Zhang, and Y. Xianyu, Sulfhydryl-mediated etching suppression of gold nanostars for rapid and sensitive detection of bacterial pathogens, Chem. Eng. J., 481, 148650 (2024).