DOI QR코드

DOI QR Code

Recent Progress in Colorimetric Assays Using the Absorption of Plasmonic Gold Nanoparticles

플라즈모닉 금 나노입자의 흡광 특성을 활용한 생화학적 비색 분석법 연구 동향

  • Bong-Geun Kim (Department of Chemical Engineering, Myongji University) ;
  • Sang Bin Yoon (Department of Chemical Engineering, Myongji University) ;
  • Sukyeong Hwang (Department of Chemical Engineering, Myongji University) ;
  • Hyon Bin Na (Department of Chemical Engineering, Myongji University)
  • 김봉근 (명지대학교 화학공학과) ;
  • 윤상빈 (명지대학교 화학공학과) ;
  • 황수경 (명지대학교 화학공학과) ;
  • 나현빈 (명지대학교 화학공학과)
  • Received : 2024.03.10
  • Accepted : 2024.03.20
  • Published : 2024.04.10

Abstract

Light absorption has potential as a signal in biochemical analyses due to its simplicity in measurement and interpretational clarity. Among substances that generate absorption signals, gold nanoparticles possess advantages such as chemical stability, biological compatibility, and unique optical properties from the localized surface plasmon resonance (LSPR) in the visible light range. They also exhibit versatility compared to other colorimetric substances effective only for specific target molecules, as they easily conjugate with various detection active substances like antibodies and aptamers. Particularly due to advantages such as low cost, ease of particle synthesis, and high environmental stability compared to enzyme-based colorimetric methods, gold nanoparticles are extensively researched as signal substances in colorimetric assays. This review summarizes various strategies utilizing gold nanoparticles as absorption signal substances, focusing on recent research. Based on the characteristics of gold nanoparticles, where the optical property is influenced by particle morphology, literature is classified and reviewed based on strategies controlling the shape of gold nanoparticles during signal generation. Through this, it is observed that gold nanoparticles, which have been used as absorption signal substances, continue to be actively researched, affirming their potential for broad and continuous improvement in the future.

흡광은 측정이 간편하고 해석의 직관성이 높다는 점에서 생화학 기반 분석법의 신호로서 강점을 가진다. 흡광을 가지는 물질 중에서 금 나노입자는 화학적 안정성, 생물학적 친화성, 가시광선 범위에서 야기되는 국소 표면 플라즈몬 공명(localized surface plasmon resonance, LSPR)에 의한 독특한 광학적 특성 등의 유용한 성질을 지니며, 특정 표적 물질에만 유효한 다른 발색물질과 비교해 항체나 압타머 등 다양한 검출 활성물질과 접합이 용이하여 확장성을 가진다. 특히, 기질의 산화로 발색을 야기하는 효소 기반 발색법에 비해 낮은 가격, 쉬운 입자 합성, 높은 환경안정성 등의 장점으로 인해 비색화 분석법의 신호물질로서 광범위하게 연구되고 있다. 본 총설에서는 이와 같은 금 나노입자를 신호물질로 활용하는 다양한 전략을 최근의 연구들을 중심으로 요약 정리하였으며, 입자의 형태에 광학 특성이 영향을 받는 금 나노입자의 특징에 착안하여 신호생성 시에 활용한 금 나노입자의 형태 제어 전략을 기준으로 문헌들을 분류하고 검토하였다. 이를 통해 이미 오랜 기간 활용되어온 금 나노입자가 현재에도 흡광 신호물질로서 여전히 활발하게 연구되고 있다는 사실을 고찰하고, 향후에도 광범위하고 지속적으로 개선될 여지를 가진다는 점을 확인하였다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1061247).

References

  1. M. H. Jazayeri, T. Aghaie, A. Avan, A. Vatankhah, and M. R. S. Ghaffari, Colorimetric detection based on gold nano particles (GNPs): An easy, fast, inexpensive, low-cost and short time method in detection of analytes (protein, DNA, and ion), Sens. BioSens. Res., 20, 1-8 (2018).
  2. S. Wang, X. Cui, and G. Fang, Rapid determination of formaldehyde and sulfur dioxide in food products and Chinese herbals, Food Chem., 103, 1487-1493 (2007). https://doi.org/10.1016/j.foodchem.2006.09.023
  3. A. Choodum and N. Nic Daeid, Rapid and semi-quantitative presumptive tests for opiate drugs, Talanta, 86, 284-292 (2011). https://doi.org/10.1016/j.talanta.2011.09.015
  4. N. Carlsson, A. Borde, S. Wolfel, B. Akerman, and A. Larsson, Quantification of protein concentration by the Bradford method in the presence of pharmaceutical polymers, Anal. Biochem., 411, 116-121 (2011). https://doi.org/10.1016/j.ab.2010.12.026
  5. A. Ambrosi, F. Airo, and A. Merkoci, Enhanced gold nanoparticle based ELISA for a breast cancer biomarker, Anal. Chem., 82, 1151-1156 (2010). https://doi.org/10.1021/ac902492c
  6. R.-J. Yu, W. Ma, X.-Y. Liu, H.-Y. Jin, H.-X. Han, H.-Y. Wang, H. Tian, and Y.-T. Long, Metal-linked immunosorbent assay (MeLISA): the enzyme-free alternative to ELISA for biomarker detection in serum, Theranostics, 6, 1732-1739 (2016). https://doi.org/10.7150/thno.16129
  7. S. Ramachandran, E. Fu, B. Lutz, and P. Yager, Long-term dry storage of an enzyme-based reagent system for ELISA in point-of-care devices, Analyst, 139, 1456-1462 (2014). https://doi.org/10.1039/C3AN02296J
  8. Y. Niu, P. Wang, Y. Zhao, and A. Fan, Turn-on colorimetric sensor for ultrasensitive detection of thrombin using fibrinogen-gold nanoparticle conjugate, Analyst, 138, 1475-1482 (2013). https://doi.org/10.1039/c2an36269d
  9. Y. Kim, Y. R. Choi, B.-G. Kim, and H. B. Na, Recent progress in multiplexed detection of biomarkers based on quantum dots, Appl. Chem. Eng., 33, 451-458 (2022).
  10. T. V. Dang and M. I. Kim, Diversified component incorporated hybrid nanoflowers: A versatile material for biosensing and biomedical applications, Korean J. Chem. Eng., 40, 302-310 (2023). https://doi.org/10.1007/s11814-022-1292-z
  11. K. Atacan, N. Guy, and M. Ozacar, Preparation of gold decorated MoS2/NiO nanocomposite in the production of a new electrochemical sensor for ascorbic acid detection, Korean J. Chem. Eng., 39, 2172-2181 (2022). https://doi.org/10.1007/s11814-021-1039-2
  12. E. Hwang and B. Lee, Synthesis of a fluorescence sensor based on carbon quantum dots for detection of bisphenol A in aqueous solution, Korean J. Chem. Eng., 39, 1324-1332 (2022). https://doi.org/10.1007/s11814-021-0989-8
  13. E. Jeong, J. Park, H. Kim, S. Lee, Y. Choi, M. Tanaka, and J. Choi, Development of a liquid-based cytology method for detecting cervical cancer cells using functional gold nanorods, Korean J. Chem. Eng., 40, 369-378 (2023). https://doi.org/10.1007/s11814-022-1307-9
  14. X. Huang and M. A. El-Sayed, Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy, J. Adv. Res., 1, 13-28 (2010). https://doi.org/10.1016/j.jare.2010.02.002
  15. S. Chotithammakul, M. B. Cortie, and D. Pissuwan, Comparison of single- and mixed-sized gold nanoparticles on lateral flow assay for albumin detection, Biosensors-Basel, 11, 209 (2021).
  16. S. Cavalera, F. Di Nardo, T. Serra, V. Testa, C. Baggiani, S. Rosati, B. Colitti, L. Brienza, I. Colasanto, C. Nogarol, D. Cosseddu, C. Guiotto, and L. Anfossi, A semi-quantitative visual lateral flow immunoassay for SARS-CoV-2 antibody detection for the follow-up of immune response to vaccination or recovery, J. Mater. Chem. B, 12, 2139-2149 (2024). https://doi.org/10.1039/D3TB02895J
  17. G. B. L. Silva, L. A. C. Alvarez, F. V. Campos, and M. C. C. Guimaraes, J. P. Oliveira, A sensitive gold nanoparticle-based lateral flow immunoassay for quantitative on-site detection of salmonella in foods, Microchem. J., 199, 109952 (2024).
  18. S. K. Bikkarolla, K. Venkatesan, Y. R. Revathy, S. Parameswaran, S. Krishnakumar, and D. Dendukuri, The quantitative detection of cystatin-C in patient samples using a colorimetric lateral flow immunoassay, Biosensors-Basel, 14, 30 (2024).
  19. J. Chen, B. Ren, Z. Wang, Q. Wang, J. Bi, and X. Sun, Multiple isothermal amplification coupled with CRISPR-Cas14a for the naked-eye and colorimetric detection of aflatoxin B1, ACS Appl. Mater. Interfaces, 15, 55423-55432 (2023). https://doi.org/10.1021/acsami.3c13331
  20. J. Polte, Fundamental growth principles of colloidal metal nanoparticles - A new perspective, CrystEngComm, 17, 6809-6830 (2015). https://doi.org/10.1039/C5CE01014D
  21. M. K. Hammood, J. N. Jeber, M. A. Khalaf, and H. Abdul Hadi Kharaba, Rapid colorimetric sensing of chlorpromazine HCl antipsychotic through in situ growth of gold nanoparticles, RSC Adv., 14, 2327-2339 (2024). https://doi.org/10.1039/D3RA05516G
  22. R. P. Edachana, A. Kumaresan, V. Balasubramanian, R. Thiagarajan, B. G. Nair, and S. B. Thekkedath Gopalakrishnan, Paper-based device for the colorimetric assay of bilirubin based on in-situ formation of gold nanoparticles, Microchim. Acta, 187, 60 (2020).
  23. J. Tang, K. Gao, Q. Ou Q, X. Fu, S.-Q. Man, J. Guo, and Y. Liu, Calculation extinction cross sections and molar attenuation coefficient of small gold nanoparticles and experimental observation of their UV-vis spectral properties, Spectrochim. Acta A, 191, 513-520 (2018). https://doi.org/10.1016/j.saa.2017.10.047
  24. M.-P. Peng, W. Ma, and Y.-T. Long, Alcohol dehydrogenase-catalyzed gold nanoparticle seed-mediated growth allows reliable detection of disease biomarkers with the naked eye, Anal. Chem., 87, 5891-5896 (2015). https://doi.org/10.1021/acs.analchem.5b00287
  25. X.-H. Pham, E. Hahm, T. H. Kim, H.-M. Kim, S. H. Lee, Y.-S. Lee, D. H. Jeong, and B.-H. Jun, Enzyme-catalyzed Ag growth on Au nanoparticle-assembled structure for highly sensitive colorimetric immunoassay, Sci. Rep., 8, 6290 (2018).
  26. T. Ma, K. Liu, X. Yang, J. Yang, M. Pan, and S. Wang, Development of indirect competitive ELISA and visualized multi-color ELISA based on gold nanorods growth for the determination of zearalenone, Foods, 10, 2654 (2021).
  27. S. Wu, L. Sheng, G. Kou, R. Tian, Y. Ye, W. Wang, J. Sun, J. Ji, J. Shao, Y. Zhang, and X. Sun, Double phage displayed peptides co-targeting-based biosensor with signal enhancement activity for colorimetric detection of staphylococcus aureus, Biosens. Bioelectron., 249, 116005 (2024).
  28. Y.-J. Chang, Y.-H. Chien, C.-C. Chang, P.-N. Wang, Y.-R. Chen, and Y.-C. Chang, Detection of femtomolar amyloid-β peptides for early-stage identification of Alzheimer's amyloid-β aggregation with functionalized gold nanoparticles, Appl. Mater. Interfaces, 16, 3819-3828 (2024). https://doi.org/10.1021/acsami.3c12750
  29. Y. Wu, R. Liu, Z. Huang, H. Chen, X. Zhao, Y. Rao, R. Bai, W. Long, J. Yang, W. Lan, and H. Fu, Dual-channel colorimetric sensor based on metal ion mediated color transformation of AuNPs to identify the authenticity and origin of atractylodis macrocephalae rhizoma, Sens. Actuator B-Chem., 400, 134920 (2024).
  30. F. Liu, C. Zhang, Y. Duan, J. Ma, Y. Wang, and G. Chen, A detection method for prorocentrum minimum by an aptamer-gold nanoparticles based colorimetric assay, J. Hazard. Mater., 449, 131043 (2023).
  31. L. Lu, R. Yu, and L. Zhang, AFB1 colorimetric aptamer sensor for the detection of AFB1 in ten different kinds of miscellaneous beans based on gold nanoparticles and smartphone imaging, Food Chem., 421, 136205 (2023).
  32. J. Zhu, B. Yang, H. Hao, L. Peng, and S. Lou, Gold nanoparticles-based colorimetric assay of pesticides: A critical study on aptamer's role and another alternative sensor array strategy, Sens. Actuator B-Chem., 381, 133439 (2023).
  33. T. Zhao, X. Liang, X. Guo, X. Yang, J. Guo, X. Zhou, X. Huang, W. Zhang, Y. Wang, Z. Liu, Z. Jiang, H. Zhou, and H. Zhou, Smartphone-based colorimetric sensor array using gold nanoparticles for rapid distinguishment of multiple pesticides in real samples, Food Chem., 404, 134768 (2023).
  34. C. Wenck, D. Leopoldt, M. Habib, J. Hegermann, M. Stiesch, K. Doll-Nikutta, A. Heisterkamp, and M. L. Torres-Mapa, Colorimetric detection of oral bacteria using functionalized gold nanoparticles as a plasmonic biosensor array, Nanoscale Adv., 6, 1447-1459 (2024). https://doi.org/10.1039/D3NA00477E
  35. S. Yadav and J. Satija, Shape dependent sensing potential of gold nanoparticles in etching based multicolorimetric plasmonic-ELISA, Nanoscale Adv., 4, 3928-3939 (2022). https://doi.org/10.1039/D2NA00266C
  36. F. Ma, Z. Zhao, J. Huang, Q. Xiong, S. Xu, and Z. Lin, Hybridization chain reaction assisted multicolor immunosensor for sensitively detection of human chorionic gonadotropin, Talanta, 270, 125578 (2024).
  37. Z. Zhao, Z. Li, J. Huang, X. Deng, F. Jiang, R. P. S. Han, Y. Tao, and S. Xu, A portable intelligent hydrogel platform for multicolor visual detection of HAase, Microchim. Acta, 191, 101 (2024).
  38. X. Ma, H. Zhang, J. Liu, H. Zhang, X. Hu, Y. Wang, X. Li, and J. Xu, An ultrahigh-resolution multicolor sensing platform via target-induced etching of gold nanorods for multi-colorimetric analysis of trace silver ions, Sens. Actuator B-Chem., 397, 134658 (2023).
  39. T. Yu, Y. Fu, J. Yi, Z. Wang, J. Zhang, and Y. Xianyu, Sulfhydryl-mediated etching suppression of gold nanostars for rapid and sensitive detection of bacterial pathogens, Chem. Eng. J., 481, 148650 (2024).