DOI QR코드

DOI QR Code

Reverse Inequalities through k-weighted Fractional Operators with Two Parameters

  • Bouharket Benaissa (Faculty of Material Sciences, Laboratory of Informatics and Mathematics, University of Tiaret) ;
  • Noureddine Azzouz (Faculty of Sciences, University Center Nour Bachir El Bayadh)
  • Received : 2023.06.10
  • Accepted : 2023.08.17
  • Published : 2024.03.31

Abstract

The aim of this paper is to present an approach to improve reverse Minkowski and Hölder-type inequalities using k-weighted fractional integral operators a+𝔍𝜇w with respect to a strictly increasing continuous function 𝜇, by introducing two parameters of integrability, p and q. For various choices of 𝜇 we get interesting special cases.

Keywords

References

  1. B. Benaissa, More on reverses of Minkowski's inequalities and Hardy's integral inequalities, Asian Eur. J. Math., 13(3)(2020), 1-7. https://doi.org/10.1142/S1793557120500643 
  2. B. Benaissa and H. Budak, More on reverse of Holder's integral inequality, Korean J. Math., 28(1)(2020), 9-15. https://doi.org/10.11568/kjm.2020.28.1.9 
  3. B. Benaissa, A generalization of reverse Holder's inequality via the diamond-a integral on time scales, Hacet. J. Math. Stat., 51(2)(2022), 383-389. https://doi.org/10.15672/hujms.877967 
  4. B. Benaissa and A. Benguessoum, Reverses Hardy-Type Inequalities Via Jensen Integral Inequality, Math. Montisnigri, 52(2021), 43-51. https://doi.org/10.20948/mathmontis-2021-52-5 
  5. S. Habib, S. Mubeen, M. N. Naeem, and F. Qi, Generalized k-fractional conformable integrals and related inequalities, AIMS Math., 4(3)(2019), 343-358.  https://doi.org/10.3934/math.2019.3.343
  6. F. Jarad and T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst. Ser. S, 13(3)(2020), 709-722. Discrete and Continuous Dynamical Systems - Series S, 2020, vol. 13, issue. 3 https://doi.org/10.3934/dcdss.2020039 
  7. F. Jarad, T. Abdeljawad and K. Shah, On the weighted fractional operators of a function with respect to another function, Fractals, 28(8)(2020), 2040011, 1-12. https://doi.org/10.1142/S0218348X20400113 
  8. A. A. Kilbas, H. M. rivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equation, Elsevier Science B. V., Netherlands, 2006. 
  9. F. Usta, H. Budak, F. Ertugral, and M. Z. Sarikaya, The Minkowski's inequalities utilizing newly defined generalized fractional integral operators, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68(1)(2019), 686-701. https://doi.org/10.31801/cfsuasmas.463983 
  10. G. Rahman, A. Khan, T. Abdeljawad and K. S Nisar, The Minkowski inequalities via generalized proportional fractional integral operators, Adv. Differ. Equ., 287(2019). https://doi.org/10.1186/s13662-019-2229-7 
  11. W.T. Sulaiman, Reverses of Minkowski's, Holder's, and Hardy's integral inequalities, Int. J. Math. Math. Sci., 1(1)(2012), 14-24. https://modernscientificpress.com/journals/ijmms.aspx 
  12. B. Sroysang, More on Reverses of Minkowski's Integral Inequality, Math. Aeterna, 3(7)(2013), 597-600. https://www.longdom.org/archive/me-volume-3-issue-7-year-2013.html 
  13. J. Vanterler da C. Sousa, E. Capelas de Oliveira, The Minkowski's inequality by means of a generalized fractional integral, AIMS Mathematics, 3(1)(2018), 131-147. https://doi.org/10.3934/Math.2018.1.131