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ABSTRACT. The aim of this paper is to present an approach to improve reverse Minkowski
and Holder-type inequalities using k-weighted fractional integral operators ,+J%, with re-
spect to a strictly increasing continuous function p, by introducing two parameters of
integrability, p and ¢. For various choices of p we get interesting special cases.

1. Introduction

Fractional calculus, in which the introduction of several distinct fractional in-
tegral operators is used in solving integeral inequalities, has proved useful in appli-
cations in such fields as physics, engineering, and computer science. The operators
introduced include the Riemann-Liouville, Hadamard, Katugompola, and propor-
tional fractional integral operators. The proportional fractional integral operator is
particularly noteworthy in being a generalized fractional operator. Specific appli-
cations of generalized operators can be found, for example, in [8], and [6].

In [7], the weighted fractional integral is defined as follows. For an integrable
function f on the interval [a, b] and for a differentiable function p such that /() # 0
for all t € [a,b], it is

x

arInf(@) = ' (s)(u(x) — p(s))?~w(s)f(s)ds, = >a,

)

where w is a weighted (positive measurable) function.
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Researchers have expanded and improved Minkowski’s inverse inequality by
applying it to fractional integral operators. This has resulted in the development of

new mathematical tools that have enhanced our ability to solve problems in various
fields. See [9], [10], [13].

In [1], the author presented the following generalization of the reverse Minkowski’s
inequality, for any measurable functions f,g > 0 on (a,b) and p > 1, if 0 < ¢ <
m < 2 < M for all @ € [a,b], then

% (/ab(af(x) - Cg(x))pdl"); = </ab fp(x)dx> % + (/ab gp(x)dx>;

b
S < [ st - cg(x))pdx>

A

=

Using ¢ = 1 we get Sroysang’s inequalities [12, Theorem 2.2] and if we put
a = ¢ =1 we obtain the Sulaiman’s inequalities [11, Theorem 3.1].
In [2], the authors provide a generalization of the reverse Holder’s inequality.

For A,y > 0 and f, g, w > 0 measurable functions on (a,b) and p > 1 ,(% +L=1),

P
if0<m< aq,?(i:;) < M for all x € [a,b] we have

( A fk(x)w(x)dx) : ( A g”(w)w(w)dm> " (¥) ; [ 1w @

Moreover, a new version to the reverse Holder’s inequality with two parameters
was has been presented on time scales in [3].

Motivated by the above literature, the present paper introduces a new definition
of weighted fractional operators of a function with respect to another function. In
Section 2, we present new versions of the reverse Minkowski-type inequality using k-
weighted fractional operators with two parameters. Section 3 establishes the reverse
Holder-type inequality in fractional calculus using k-weighted fractional operators
with two parameters. At the end of the paper, we conclude with a brief summary
of the findings.

2. k-weighted Fractional Operators

Let [a,b] C (0,400), where a < b. In this section, we present a definition of the
k-weighted fractional integrals of a function f with respect to the function p and
we prove that they are bounded in a specified space.
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Definition 2.1. Let § > 0, £ > 0 and p be a positive, strictly increasing dif-
ferentiable function such that p’(s) # 0 for all s € [a,b]. The left and right sided
k-weighted fractional integral of a function f with respect to the function u on [a, b]
are defined respectively as follows.

”“m:;gcls ) — u(s)) % w(s) f(s)ds, z>a

Q1) wTf@) = s [ W)~ p() e (s 2> a
~U 1 b ! é71

22 b Wf@) = s [ W) — ) E (s f(s)ds, @ <

where w is a weighted function and the k-gamma function defined by

I (6) :/ =1~ dt.
0

When f(s) =1, we denote

1
o+ I 1(2) = w

T [ e - o)

and

b
e W1e) = s [l — (o)

Remark 2.1. Let ¢ > 0 be a positive constant if f(s) = ¢, we get
atIhe.(x) =c [+ T8 1(2)].

The space L)V [a, b] of all real-valued Lebesgue measurable functions f on [a, b] with
norm conditions:

b v
11l = (/ | f(x) IpW(ﬂf)dJﬂ> <00, 1 <p<+oo.

is known as weighted Lebesgue space, where W be a weight function ( measurable
and positive ).

1. Put W =1, the space L)’ [a, b] reduces to the classical space Ly|a, b).
2. Choose W (z) = wP(x) p'(x), we get

P

b
(23)  Lxgpla,bl = qf: 1 f llxz= (/ | w(@)f(x) P #'(w)dx> <o



34 B. Benaissa and N. Azzouz

In the following Theorem we show that the k-weighted fractional integrals are clearly
defined.

Theorem 2.1. The fractional integrals (2.1), (2.2) are defined for all functions
[ € Lx[a,b] and we have

(2.4) ot I f(x) € Lxy [a,b], »- I f(z) € Lxi[a,b].

Moreover

25) 3@y <C I @lxy . o357 @lxy < C U@y, .
where

_ () — p(a))
¢= I'w(8+ k)

=@

Proof. For all % > 0, by using Fubini’s Theorem, we get
b
ot T 0@l = [ wla) o @) | ')

1 b x ) i
= m/ﬂ / lw(s)f(s)| ' (s) (@) — p(s)) = ' (x) ds da

1 ' ’ 1 /
=t L e </ (n(a) = pls)) ™' (@) dx) u(s) ds

b B

= Bﬁw) / [w(s)£(5)] (1(B) — p(s))F ' (s) ds

< WO [ s (5)

=C [If(@)llyy -
Similarly

’ " , (1(b) — pla))*
| @l 310 | '@ < SLZE 1@l

This gives us our desired formulas (2.5) and (2.4). O

Setting p(7) = 7, then o4 I f(z) and ,_J% f(x) reduce to the k-weighted fractional
integral of Riemann-Liouville operator of order 5 > 0.

1

RLYf(z) = w@)ETe(B) /I(x — 8)%_1w(s)f(s)ds, x> a.
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RLYf(2) = 1/b(s—x)£_1w(s)f(s)ds x<b
? w(@)kTy(B) Jo 7 ’

Setting p(7) = In7, then o434 f(x) and ,_J# f(x) reduce to the k-weighted frac-
tional integral of Hadamard operator of order 5 > 0.

1 v z\ %1 ds
i]-(lf(x)zm/a (lng) f(s)?, T >a> 1.

ﬂ{zf(a:)_kri(m/:(lni)f_ f(s)dss, z<b.

Setting u(r) = Tp‘rll where p > 0, then o43% f(z) and ,_J% f(z) reduce to the
k-weighted fractional integral of Katugompola operator of order 5 > 0.

Xif(z) = W/a (xPtt — SPH)%_l w(s)s” f(s)ds, x> a.

=2 b 8_
Ko f(z) = W/ﬂﬁ (sPTh —arthy* ! w(s)s” f(s)ds, x<b,.

Setting pu(7) = =2 “) for 6 > 0 (respectively u(7) = (b—07—)9 ), then T f(z) (ve-
spectively ,_ ¥ f(x ) ) are reduce to the k-weighted fractional integral of conformable
operator of order 3 > 0.

91— % @ 8_
G]f(l‘) = m/ ((.’I,' — a)e _ (S — a)G) F1 w(S)(Sf(j))lads’ x> a.
017 b B_
Cgf(x):m/ (b—2) = (b—s)%)" lw(s)(bf(j))l_gds, x <b,.
For example see [5]. The most important feature of the k-weighted fractional in-

tegrals ,+J¥ f(x) and ,_J¥ f(x) is that they give certain types of the k-weighted
fractional depends on the choice of the function p. We present the following Lemma
[4], [3], that is used to prove our results.

Lemma 2.1. Let 1 < ¢ < p < oo and f, W be non-negative measurable
functions on [a, b]. We suppose that 0 < f: fr(s)W(s)ds < oo for r > 1, then

(2.6) / FUs)W (s)ds < (/ Wi(s ) (/abfp(s)W(s)ds>g

and

P*q

[ 7w ( / bW(s)ds) ( [ )

RN
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Proof. If p = q we get equality and for p # ¢ using the Holder’s integral inequality
with = > 1, we have

/ab FUs)W (s)ds = /ab (W¥(s)) (fq(s)w%(s)) ds

< ( A W<s>d3> - ( A fp(s)W(S)d8>

Since 1 < ¢g<p<oo=1<p <¢ < oo, thus the proof of the second inequality
is similar to the first one. O

a
p

Corollary 2.1. Let 1 < ¢ < p < 00, f be non-negative measurable function on
[a, 2] and p be a positive strictly increasing differentiable on [a, b] and ,+J% is the
operator defined by (2.1), then

(2.7) (o 3 f1(@)) T < [0 ToL(2)] T (0 T ()7
and
(- T%f1(2))7 < [-T01(2)] 7 (,-T% ()
Proof.ﬂ Using the inequality (2.6) by taking W(s) = mu’(s)(u(x) —
u(s))® " tw(s), we obtain that
’ 1 / %—1 q
| s o)) = wls) E ) £ (5)ds
: 1 ! FLuw(s)ds -
< ([ om0 - ne)uts)as)
I;'s x—sgflwspssg
([ s O - wo)E e e )

this gives the desired results. [
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3. Reverse Minkowski Type Inequalities via k-weighted Fractional Inte-
grals

Let 0 <a < b< 400, w be a weight function and f, g be a positive measurable
functions on [a, ], suppose that f?, g” € Lx: [a,b], where

b
(31)  Lyylab] = {f: I £ llxs= ( / () f(x) | u’(fv)dx> < oo}.

Theorem 3.1. Let f, g >0, 1 <g<p<+oo, a>0 and

(3.2) O<ec<m< agJZS) <M, for allsc€la,xl],
then
M+« " g
o =g @IS @y <
(33) (a3 f(2)d) + ([0 T 2(@)] T 01 TgP(2)dz)”
mta H B B _ P b
< m ([a+§w1(a?)] at I (af () — cg(x)) dx) ’
and
ST g (- (e )~ gl ) < ;
(34) (-3t 2(@)d) 7 + ([- T 1(@)] T - Tag(w)de)”
mta JH e qu _ P b
alm —c) ([b— H1(x)] p- T8 (af(x) — cg(x)) dgc)

1 1 1 g(s) 1 1
D<o —<>_ I
<t T moe af(s) e M’
hence
cM ca f(s) cm

M—c ™ af(s)—cg(s) — m—c’
that yields
T (@f(5) — cg(9)) < 1) S~ (af(5) — cqls)
a(M —c) - ~a(m—c) ’

taking the ¢** power of the above inequality and multiplying by the positive quotient

1 8
51

w(@)k T (5)
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we obtain

(a(l\ﬁ/l— c)) w(m)klfk(ﬁ)ﬂ/(s)(ﬂ(m) = u(s)Fw(s)(af (s) = cg(s))?

< T O —ae) ()

m a 1 )
= <a(m - c)> w(z)k I‘k(ﬁ)u (s)(u(@) = pu(s))

integrating with respect to s over [a, z], we get

(3 5) a(]\iw_ C) (a+jﬁ}(01f(l‘) - Cg(x))qu)% < (a+jﬁ)fq(x)daj)%
| < o =g e Thlas (@) — eg(e) e

applying the inequality (2.7) on the right-hand side of (3.5), we get

M I (af(z) — cg(x))idz) e +~qux§
(3.6) Q(T_ﬂ?(auw( f( )Bg( )dz)e < (o Th fU )dl)
= a(m — c) [o+ T8 1(x)] 77 (o+T5 (af (x) — cg(x))Pdx)? .

Using the assumption (3.2), we obtain

f(s) = cy(s)

«
0O<m—-—c< <M —ec¢,

g(s) -

therefore

for p > 1 we deduce that

1 P P < gP < 1 P p
(57=:) @)ool <9 < (1) (@rlo) = cats)r,

. . o . 1 / %,1
multiplying by the positive quotient Wu (s)(u(x) — p(s))* “w(s) and
integrating with respect to s over [a, x], thus

1 1 1

e (P S0) s < (g ()

B =

A

< (e f(@) — eg@))?
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therefore

S

— Lo 1)) 7 (1 (@) — cg(@))?)
s 2@ 7 (o Tg” (@)
—— [t @) T (T (af (@) — cg(2))?)

<l

(3.7)

S =

INIA

Applying the inequality (2.7) on the left-hand side of (3.7), we get

pP—q

(38) g (DS (@)~ cgl@)) < [ W1 T (o g (@)

=

< L[ 1@) 5 () - cg()?)

m—c

39

Adding the inequalities (3.6) and (3.8), we get the required inequality (3.3). The

proof of the inequality (3.4) is similar to the proof of the inequality (3.3).

O

We present some results which are special cases of Minkowski’s reverse type in-
equalities via the k-weighted fractional integral (2.1) with two-parameters in the
Corollaries mentioned below. Setting u(7) = 7, w(7) =1 and § = k = 1, then we

H1(x) =z —a and

w

get 4+J

Ros () = /zf(t)dt, r>a

Corollary 3.1. ( Reverse Minkowski type inequality via Riemann integral opera-

tor.) Let f,g>0, 1<qg<p<+o0, a>0and

af(s)

0<e<m< () <M, for allsé€ [a,z],
then
s ([Cano = ooy ar)”
(3.9) < ( ; (1) dt>q + ([x—a}”a"/;gp(t) dt)p

< (w-a [ - copa)

a(m —c)

The inequality (3.9) is a new result via Riemann operator on [a, ] with two param-

eters 0 < ¢ < p and for ¢ = p we get [, Theorem 1.2].
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Elie)

Setting w(7) = 1 and p(7) = 7 we get o+ I 1(x) = m(x —a)® and

1 r 8
RLCE xzi/ x—t)F L f(t)dt, x> a.
+f( ) ka(ﬂ) " ( ) f()
Corollary 3.2. (Reverse Minkowski type inequality via k-Riemann-Liouville oper-
ator.) Under the assumptions of the Corollary 3.1 , we have

1

P (REh (0 () — cg())?)”

a(M —c)

(sm’;fqu))% + ([F(gm(x —a)f] - gm’;+gp(a:)> ’

IN

(3.10)

|=

—q P

mxa ! G B k (af(z) = cg(x))?
Sa(m—c) ([Fk(ﬂJrk)(x_a) :| RL g+ (af(x) — cy( ))) )

The inequality (3.10) is a new result via the k-Riemann-Liouville operator on [a, z]
with two parameters 0 < p < ¢, if we take k = 1 we get a new Riemann-Liouville
result.

8
Setting w(7) = 7 and u(7) = In 7, we deduce ,+T-1(z) = m (InZ)* and
1 Ty el f(1)
HE =— In — —=dt 1.
ot /(@) ka(ﬁ)/a (nt) g ez

Corollary 3.3. (Reverse Minkowski type inequality via k-Hadamard operator.)
Under the assumptions of the Corollary 3.1 , we have

M+«
a(M —c)

Q=

(Ha+(a f(2) = cg(x))7)

1
P—q P

O (TR R

IN

(3.11)

< a?:n—i;aC) |:Fk(ﬂl+ ) (1n 2)7 Has (0 f(2) = cg(x))”

Inequality (3.11) is a new result via the k-Hadamard operator on [a,z] with two
parameters 0 < p < ¢g. If we put £k = 1 we get a new result with the Hadamard
operator.

s
. o1 ~ 2Pt _gptt\ F
Setting w(7) = 7 and p(7) = ;T’ we get o+ 1(z) = Fk(,61+k) ( : P+l )
and
(p+ 1% [ 2
KE, flx) = W/ (Pt — e f(Hdt, > a.
k a
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Corollary 3.4. (Reverse Minkowski type inequality via k-Katugompola operator.)
Under the assumptions of the Corollary 3.1 we have for all p > —1

(3.12)

T (K (e f(@) = eg(@))

Q=

p—aq

8174
1 Pt _gPpt1l \ k k
+ |:Fk(5+k) ( p+1 ) :| :KaJrgp(m)

Q=

< (fKZJrfq(x))

3=

m+a 1 gptl et F] C )
= a(m—oc) [rk(mk)( p+1 >] Ko (@ f(@) = eg(x))

Inequality (3.12) is a new result via the k-Katugompola operator on [a, ] with
two parameters 0 < p < ¢q. If we put kK = 1 we get a new result with the Katugom-

6
pola operator. Setting w(7) =7 and u(7) = (T_Ga) , we have

w1 (@—a)\*
a+Jw1(I)_Fk(5+k)< 7 > and

8

o 01— % ¥ x_ag_ —(le £-1 f(t) T>a
i) = 15 | (@ == LB e

Corollary 3.5. (Reverse Minkowski type inequality via fractional k-conformal

integral operator.) Under the assumptions of the Corollary 3.1 , we get

s (€l @) = o))

Q=

1
P—q P
B q

k rq % 1 (xia)e * k_p T
SO | | ma () | etew

IN

P—4q

m+ 1 (x—a)? .
<ot eass (50) | dafe - )

E 1o
<
s

Inequality (3.13) is a new result via the k-conformal operator on [a, z] with two
parameters 0 < p < q. If we put k = 1 we get a result with the conformal operator.
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4. Reverse Holder inequalities via k-weighted fractional integral

In the following theorem, we present and prove the reverse Holder type inequal-
ity according to the k-weighted fractional integral with two parameters. Recall the
k-weighted fractional integral defined as

”“x:;gg's x) — u(s))Ftw(s)f(s)ds, z=>a
W Bf@) = s | W) — ) s, >

Theorem 4.1. Let 0 <a <b < +00,A,7> 0,1 <g<p<oo, t+5 =1+L =1
Let w be a weight function and f,g be a positive measurable functions on [a, b],
suppose that f", g" € Lx1 [a,b] where n > 0. If

f(s)

(4.1) 0<m< )

<M for all s€ [a,z],

Proof. From the hypothesis (4.1) we have
F77(s) < MY g7 (s),

thus Lo .
SAs) < MV frgv(s).

Multiplying the above inequality by the positive quotient p/(s)(p(x)—p(s))* ~tw(s)
and integrating with respect to s over [a, z], we deduce that

S

x
7

(2T f2@)7 < M (0913 (@)g7 (@)

therefore
(43) [0+ 31(2)] 70 (T fA(2))7
< [ 1@) 7 Mo (01T f 7 (@) ()"

Now replacing f by f » in the inequality (2.7), we get

1

(4.4) (3% @) < [T (T8 @)7
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according to inequalities (4.3) and (4.4), we deduce

1
1

o 0 11 A 2 ®
(45) (T8I @) <[ 1@)T M (403 f7 @) (2) "
Similarly, from the assumption (4.1) we have
(s) <m™a fa(s),

multiplying by g%

this gives us

yielding

a=p 1
q 7

(4.6)  [arTu1(@)] 7" (o+ Ty (2))

< ()" L@ (st @e? @)

m

Again we replace f by g% in the inequality (2.7), we result

1

(4.7) (“*jigy(x)y <[ @) (e Tg" (@)

according inequalities (4.6) and (4.7), we obtain

1
'y v’ 1 1 _ 1 P
(4.8) (a+3§;gq’(x)) < (2)77 [ I1@)] 7 (5 (097 (@) "
Finally, by multiplying the inequalities (4.5) and (4.8) we get the desired inequality
(4.2). O

We now present some new inequalities with two parameters which are special
cases of the inverse Holder inequalities via the k-weighted fractional integral (2.1).

Corollary 4.1. Taking w = 1. Under the assumptions of Theorem 4.1, we result

the following cases.
The reverse Holder’s inequality related to the Riemann integral:

" ( ; IS0 dt>1 (l/azg”;ﬂ(t) dt)pl, N

<n ([ podoa) ([ o)

2
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where

a (1 ﬁ
By =: BY% (x) = M () (z—a)i s,

LN

m

The reverse Holder’s inequality related to the k-Riemann-Liouville integral:

1 , =
(Rek s @) (%’éw‘?’ <x>> p
1

< By (RELf3 (@)g7 (@) (REE: £ ()97 (@)

(4.10)

where

1 2 2
1 1 ad 1 B8 9 p
BZ = Bfrl’?l\/f(x) = Mvw»r <m) [W(x - a) k:| .

The reverse Holder’s inequality related to the k-Hadamard integral:

A
o7

i (o5 @) (57 @)

=
a\‘H

a2
7

< By (365 £7 (@)g7 (2)) " (360 17 ()97 (@)

where

2_2
a p

a (1 r 1 T\ 7
. p,q _ oo’ _
B3 =: Bm7M(x)7M <m> {Fk(5+k) (lna) }

The reverse Holder’s inequality associated with k-Katugompola integral:

1

112 (%P @) (1507 @)

m\‘,_‘

a2

(%517 (2)g7 @)

S

< By (Kb f7(2)g7 ()

where

1 B
a1 1\ 1 Pl — gptINF
B, =: B! =Mv»" [ —
¢ = Bl (m) lfk(mk)( pr1 ) ]

The reverse Holder’s inequality associated with k-conformal integral:

QN

< o

1
o7

a1 (etr% @) (et )’

< By (€53 @ () (€173 @ (@)
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where

2_
q

S o

1 B
R e 1Y e 1 (x—a)’\*
By = B (@) = M (m) T3+ ) ( ] )

Remark 4.1. Setting ¢ = p in the above inequalities (4.9), (4.10), (4.11), (4.12)
and (4.13), we obtain new formulas to the reverse Holder’s inequalities in fractional
calculus with one parameter p > 1.

5. Conclusion

We introduced new inequalities using k-weighted fractional integral operators
with two parameters p and ¢. These inequalities are a novel extension of the re-
verse Minkowski and Holder-type inequalities and include specific cases such as
k-Riemann-Liouville, k-Hadamard, k-Katugompola and k-conformal fractional.
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