References
- P. G. Cazassa and G. Kutyniok, Finite Frames Theory and Applications, Applied and Numerical Harmonic Analysis Series, Birkhauser, Boston, 2013. https://doi.org/10.1007/978-0-8176-8373-3
- O. Christensen, An Introduction to Frames and Riesz Bases, Second Edition, Birkhauser, Boston, 2016.
- I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), 1271-1283. https://doi.org/10.1063/1.527388
- R. J. Duffin and A. C. Schaeffler, A class of non-harmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366. https://doi.org/10.1090/S0002-9947-1952-0047179-6
- T. C. Easwaran Nambudiri, K. Parthasarathy, Generalized Weyl-Heisenberg frame operators, Bull. Sci. Math., 136 (2012), 44-53. https://doi.org/10.1016/j.bulsci.2011.09.001
- T. C. Easwaran Nambudiri, K. Parthasarathy, Characterization of Weyl-Heisenberg frame operators, Bull. Sci. Math., 137 (2013), 322-324. https://doi.org/10.1016/j.bulsci.2012.09.001
- H. G. Feichtinger, W. Kozek, Quantization of TF-lattice invariant operators on elementary LCA groups, In H.G. Feichtinger, T. Strohmer (eds.) Gabor Analysis and Algorithms: Theory and Applications, Birkhauser, Boston, MA (1998), 233-266.
- H. G. Feichtinger, W. Kozek, Luef F, Gabor analysis over finite abelian groups, Appl. Comput. Harmon. Anal. 26 (2) (2009), 230-248. https://doi.org/10.1016/j.acha.2008.04.006
- D. Gabor, Theory of communication, J. IEE, 93 (1946), 429-457.
- K. Grochenig, Foundations of Time Frequency Analysis, Birkhauser, Boston, 2001.
- M. Janssen, Gabor representation of generalized functions, J. Math. Anal. Appl., 83 (1981), 377-394. https://doi.org/10.1016/0022-247X(81)90130-X
- K. D. Lamb, Gerry, C. Christopher, and Grobe, Rainer, Unitary and nonunitary approaches in quantum field theory, (2007). Faculty publications - Physics. 40. https://ir.library.illinoisstate.edu/fpphys/40
- G. Pfander, Gabor frames in finite dimensions, Birkhauser, Boston, 2010.
- Terras. A, Fourier analysis on finite groups and applications, London Mathematical Society Student Texts, vol. 43. Cambridge University Press, Cambridge (1999).
- J. Thomas, N. M. M. Namboothiri and T. C. E. Nambudiri, A class of structured frames in finite dimensional hilbert spaces, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 28 (4), (2022), 321-334. https://doi.org/10.7468/jksmeb.2022.29.4.321