DOI QR코드

DOI QR Code

GENERALIZED PSEUDO B-GABOR FRAMES ON FINITE ABELIAN GROUPS

  • Jineesh Thomas (Research Scholar of Mathematics, St.Thomas College Palai) ;
  • Madhavan Namboothiri N.M. (Government Arts & Science College)
  • Received : 2023.07.06
  • Accepted : 2024.02.15
  • Published : 2024.03.30

Abstract

We seek for an invertible map B from L2(Γ) to L2(G), where G is a finite abelian group and Γ is the direct product of finite cyclic groups which is isomorphic to G, so that any Gabor frame in L2(G), is a generalized pseudo B-Gabor frame.

Keywords

References

  1. P. G. Cazassa and G. Kutyniok, Finite Frames Theory and Applications, Applied and Numerical Harmonic Analysis Series, Birkhauser, Boston, 2013. https://doi.org/10.1007/978-0-8176-8373-3 
  2. O. Christensen, An Introduction to Frames and Riesz Bases, Second Edition, Birkhauser, Boston, 2016. 
  3. I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), 1271-1283. https://doi.org/10.1063/1.527388 
  4. R. J. Duffin and A. C. Schaeffler, A class of non-harmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366. https://doi.org/10.1090/S0002-9947-1952-0047179-6 
  5. T. C. Easwaran Nambudiri, K. Parthasarathy, Generalized Weyl-Heisenberg frame operators, Bull. Sci. Math., 136 (2012), 44-53. https://doi.org/10.1016/j.bulsci.2011.09.001 
  6. T. C. Easwaran Nambudiri, K. Parthasarathy, Characterization of Weyl-Heisenberg frame operators, Bull. Sci. Math., 137 (2013), 322-324. https://doi.org/10.1016/j.bulsci.2012.09.001 
  7. H. G. Feichtinger, W. Kozek, Quantization of TF-lattice invariant operators on elementary LCA groups, In H.G. Feichtinger, T. Strohmer (eds.) Gabor Analysis and Algorithms: Theory and Applications, Birkhauser, Boston, MA (1998), 233-266. 
  8. H. G. Feichtinger, W. Kozek, Luef F, Gabor analysis over finite abelian groups, Appl. Comput. Harmon. Anal. 26 (2) (2009), 230-248. https://doi.org/10.1016/j.acha.2008.04.006 
  9. D. Gabor, Theory of communication, J. IEE, 93 (1946), 429-457. 
  10. K. Grochenig, Foundations of Time Frequency Analysis, Birkhauser, Boston, 2001. 
  11. M. Janssen, Gabor representation of generalized functions, J. Math. Anal. Appl., 83 (1981), 377-394. https://doi.org/10.1016/0022-247X(81)90130-X 
  12. K. D. Lamb, Gerry, C. Christopher, and Grobe, Rainer, Unitary and nonunitary approaches in quantum field theory, (2007). Faculty publications - Physics. 40. https://ir.library.illinoisstate.edu/fpphys/40 
  13. G. Pfander, Gabor frames in finite dimensions, Birkhauser, Boston, 2010. 
  14. Terras. A, Fourier analysis on finite groups and applications, London Mathematical Society Student Texts, vol. 43. Cambridge University Press, Cambridge (1999). 
  15. J. Thomas, N. M. M. Namboothiri and T. C. E. Nambudiri, A class of structured frames in finite dimensional hilbert spaces, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 28 (4), (2022), 321-334. https://doi.org/10.7468/jksmeb.2022.29.4.321