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GENERALIZED PSEUDO B-GABOR FRAMES ON FINITE

ABELIAN GROUPS

Jineesh Thomas∗ and Madhavan Namboothiri N.M.

Abstract. We seek for an invertible map B from L2(Γ) to L2(G), where G is
a finite abelian group and Γ is the direct product of finite cyclic groups which is
isomorphic to G, so that any Gabor frame in L2(G), is a generalized pseudo B-Gabor
frame.

1. Introduction

The theory of frames in Hilbert spaces is one of the rapidly growing research area
in mathematics due to its wide range applications [1, 10]. Time- frequency analysis
of signals in L2(R), as suggested by Dennis Gabor in Theory of Communication [9],
requires a special system of the form {EmbTnag : m,n ∈ Z}, where g ∈ L2(R) and Emb,
Tna (m,n ∈ Z, a, b > 0) are the Modulation and Translation operators respectively.
Frames in Hilbert spaces were introduced in 1952 by Duffin and Schaeffer [4] in their
study of non harmonic Fourier series. In 1980’s, Janssen designed it an independent
topic of mathematical investigation by his outstanding work [11].

Frames were brought to life by Daubechies, Grossmann and Meyer in 1986 with
the fundamental works [3] and put forth the idea of combining Gabor analysis with
frame theory. Gabor analysis aims at representing functions (signals) f ∈ L2(R) as a
superposition of translated and modulated versions of a fixed function g ∈ L2(R). A
major component in frame theory is the frame operator associated with a given frame.
In particular, Gabor frame operators, which are very special in their construction, are
acquiring notable research attention and are of interest in this paper too, in the general
perspective of finite dimensional Hilbert spaces.

The concept of generalized Weyl-Heisenberg frames, frame operators in L2(R) and
its characterization are discussed in [5,6]. The notion of B-translation, B-modulation
and pseudo B-Gabor like frame on general Hilbert space H is introduced in [13, 15].
We begin with some basic definitions and results which are needed for the present
work in Section 2. Gabor analysis in L2(Zm1 × Zm2 × · · · × Zmp) and L2(G) are
discussed in Section 3. Section 4 focused on identifying Gabor frames in L2(G), as
a generalized pseudo B-Gabor frames in L2(G). Throughout in this article, L2(Γ),
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where Γ = Zm1 × Zm2 × . . .Zmp and m1,m2, . . . ,mp are positive integers, denotes
the space of all complex valued functions on Zm1 × Zm2 × . . .Zmp and L2(G) denotes
the space of all complex valued functions on finite abelian group G with respect to
standard inner product. Our basic references for both abstract Hilbert frame theory
and the theory of Weyl-Heisenberg frames are [2, 10].

2. Preliminaries

A sequence of elements {uk}∞k=1 in a Hilbert space H is said to be a frame in H, if
there are positive constants α, β such that

α‖x‖2 ≤
∞∑
k=1

|〈x, uk〉|2 ≤ β‖x‖2 ∀ x ∈ H.

These constants α, β are called frame bounds. A frame {uk}∞k=1 is called a tight frame
if the frame bounds are the same. It is called a parseval frame or normalized tight
frame when α = β = 1. If a sequence {uk}∞k=1 of elements in H satisfies the upper
frame inequality, then it is known as a Bessel sequence or a semi-frame sequence.

Remark 2.1. If {uk}∞k=1 is a frame in a Hilbert space H, then the map S defined
by Sx =

∑∞
k=1〈x, uk〉uk for all x ∈ H is a bounded linear operator on H, called the

frame operator associated with the frame {uk}∞k=1. The frame operator is bounded,
invertible, self-adjoint and positive [2].

Let {uk}∞k=1 be a frame with frame operator S in H, then the frame {S−1uk}∞k=1 is
called the canonical dual frame of the frame {uk}∞k=1. As follows, every frame together
with its canonical dual frame in H admits the frame decomposition in two ways.

Theorem 2.2. [2] Let {uk}∞k=1 be a frame with frame operator S in a Hilbert
space H. Then for all x ∈ H, x =

∑∞
k=1〈x, S−1uk〉uk and x =

∑∞
k=1〈x, uk〉S−1uk.

Both the series converge unconditionally for all x ∈ H.

3. Gabor frames on finite products of finite cyclic groups

This section is meant to develop the basic properties of Gabor frames on L2(Γ), the
space of all complex valued functions on a finite product Γ = Zm1 × Zm2 × · · · × Zmp
where m1,m2, . . . ,mp are positive integers. In the finite dimensional Hilbert space
L2(Γ), the standard inner product is given by,

〈f, g〉 =

m1∑
i1=1

m2∑
i2=1

· · ·
mp∑
ip=1

f(i1, i2, . . . , ip)g(i1, i2, . . . , ip), f, g ∈ L2(Γ)

For each k = (k1, k2, . . . , kp) ∈ Γ the translation operator Tk : L2(Γ) → L2(Γ) is
defined by,

Tkg(r1, r2, . . . , rp) = g(s1, s2, . . . , sp) (r1, r2, ..., rp) ∈ Γ

where, s = (s1, s2, . . . , sp) ∈ Γ is such that rj − kj ≡ sj(mod mj) for j = 1, 2, . . . , p.
Similarly for each l = (l1, l2, . . . , lp) ∈ Γ the modulation operator Ml : L2(Γ) →

L2(Γ) is defined by,

Mlg(r1, r2, ..., rp) = e
2πi[

l1r1
m1

+
l2r2
m2

+...+
lprp
mp

]
g(r1, r2, ..., rp), (r1, r2, ..., rp) ∈ Γ
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.

Definition 3.1. For g ∈ L2(Γ) \ {0} the collection of elements {MlTkg; k, l ∈ Γ}
is called a Gabor System generated by the window function g. A Gabor frame (also
known as a Weyl-Heisenberg frame) in L2(Γ) is a Gabor system which spans L2(Γ).
The frame operator of such a frame is given by S(f) =

∑
k,l∈Γ

〈f,MlTkg〉MlTkg.

The following result gives a significant property of a Gabor frame operator and
which is helpful for our subsequent discussions.

Proposition 3.2. The frame operator of a Gabor frame in L2(Γ) commutes with
all translations and all modulations involved in that frame.

Proof. Let {MlTkg : k, l ∈ Γ} in L2(Γ) be a Gabor frame in L2(Γ) with frame
operator S. Then for any l′ = (l′1, l

′
2, ......, l

′
p) ∈ Γ, we have

S(Ml′f) =
∑
k,l∈Γ

〈Ml′f,MlTkg〉MlTkg

=
∑
k,l∈Γ

〈f,MqMlTkg〉MlTkg

where q = (q1, q2, ..., qp) ∈ Γ is such that mj − l′j ≡ qj(mod mj) for j = 1, 2, ..., p.
Hence

S(Ml′f) =
∑
k,r∈Γ

〈f,MrTkg〉MlTkg

where r = (r1, r2, ..., rp) ∈ Γ is such that qj + lj ≡ rj(mod mj) for j = 1, 2, ..., p, so
that Ml = Ml′Mr.
Therefore,

S(Ml′f) =
∑
k,r∈Γ

〈f,MrTkg〉Ml′MrTkg

= Ml′

∑
k,r∈Γ

〈f,MrTkg〉MrTkg

= Ml′S(f)

Similarly we can show that for any k′ = (k′1, k
′
2, ......, k

′
p) ∈ Γ, S(Tk′f) = Tk′S(f).

Now we discuss the effect of invertible bounded linear operators on L2(Γ) in the
context of Gabor frames. Let B : L2(Γ) −→ H be an invertible bounded linear
operator. Then we can observe that for a Gabor frame {MlTkg : k, l ∈ Γ} in L2(Γ)

B({MlTkg : k, l ∈ Λ}) = {BMlTkg : k, l ∈ Γ}
= {BMlB

−1BTkB
−1Bg : k, l ∈ Γ}

= {(BMlB
−1)(BTkB

−1)(Bg) : k, l ∈ Γ}

Thus the image of the family {MlTkg : k, l ∈ Γ} in L2(Γ) under B gives a frame in H
and it is interesting to see that its elements are generated by the action of a family of
operators {MB

l T
B
k : k, l ∈ Γ} on a single generator Bg, where MB

l = BMlB
−1 and

TBk = BTkB
−1. Thus, such image frames are also structured frames in H. We will

formulate the following definitions which will be useful in our further discussions.
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Definition 3.3. For an invertible bounded linear operator B : L2(Γ) → H and
k ∈ Γ, generalised B-translation TBk on H is defined by TBk = BTkB

−1 and for l ∈ Γ,
generalized B-modulation MB

l on H is defined by MB
l = BMlB

−1 where Tk and
Ml are respectively the translation and modulation operators on L2(Γ). The family
{MB

l T
B
k g : k, l ∈ Γ} generated by g ∈ H is called a generalized pseudo B-Gabor

like system in H. Such a system is called a generalized pseudo B-Gabor like frame
(generalized pseudo B-Gabor like Bessel sequence) if it forms a frame (Bessel sequence)
in H.

Remark 3.4. In view of Proposition 3.2 a generalized pseudo B-Gabor like frame
{MB

l T
B
k g : k, l ∈ Γ} in H acts similar to a Gabor frame in L2(Γ) if the frame operator

of the generalized pseudo B-Gabor like frame {MB
l T

B
k g : k, l ∈ Γ} commutes with

the generalized B-translation TBk and generalized B-modulation MB
l all k, l ∈ Γ.

Theorem 3.5. Let B : L2(Γ) −→ H be an invertible bounded linear operator.
Then the frame operator of a generalized pseudo B-Gabor like frame {MB

l T
B
k g : k, l ∈

Γ} commutes with the generalized B-translation TBk and generalized B-modulation
MB

l all k, l ∈ Γ if and only if B∗B commutes with the translations Tk and modulations
Ml for all k, l ∈ Γ.

Proof. Let S be the frame operator of a generalized pseudo B-Gabor like frame
{MB

l T
B
k g : k, l ∈ Γ} in H. Then B−1 : H → L2(Γ) maps this frame to the Ga-

bor frame {MlTkB
−1g : k, l ∈ Γ} whose frame operator is B−1S(B−1)∗. Hence by

Proposition 3.2 the operator B−1S(B−1)∗ commutes with Ml and Tk for all k, l ∈ Γ.
Now, assume that S commutes with the generalized B-translation TBk and gener-

alized B-modulation MB
l all k, l ∈ Γ. Then,

SBMlB
−1 = BMlB

−1S(B∗)−1B∗

= BMl(B
−1S(B−1)∗)B∗

= B(B−1S(B−1)∗)MlB
∗

= S(B−1)∗MlB
∗

BMlB
−1 = (B−1)∗MlB

∗

MlB
−1(B∗)−1 = B−1(B∗)−1Ml

Ml(B
∗B)−1 = (B∗B)−1Ml

Similarly, Tk(B
∗B)−1 = (B∗B)−1Tk. Thus (B∗B)−1 commutes with translations Tk

and modulations Ml for all k, l ∈ Γ and hence B∗B.
Conversely suppose that B∗B commutes with the translations Tk and modulations

Ml for all k, l ∈ Γ. Then

SMB
l = SBMlB

−1 = S(B−1)∗(B∗B)MlB
−1

= S(B−1)∗Ml(B
∗B)B−1 = S(B−1)∗MlB

∗

= BB−1S(B−1)∗MlB
∗ = BMl(B

−1S(B−1)∗)B∗

= BMlB
−1S = MB

l S for all l ∈ Γ

Also it is true that, STBk = TBk S. Thus S commutes with the generalized B-
translation TBk and generalized B-modulation MB

l all k, l ∈ Γ.
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Definition 3.6. A generalized pseudo B-Gabor like frame {MB
l T

B
k g : k, l ∈ Γ} in

H is called a generalized pseudo B-Gabor frame if the frame operator of it commutes
with the generalized B-translation TBk and generalized B-modulation MB

l all k, l ∈ Γ.

3.1. Gabor frames on finite abelian groups. In this section we will discuss the
basics of Gabor frames on finite abelian groups [13].

For a finite abelian group G, space CG is identified with the space L2(G) of complex
valued functions on G equipped with the standard inner product.The unitary trans-
lation operators Tg : L2(G) → L2(G), for g ∈ G, by Tgf(h) = f(hg−1) for all h ∈ G
and the modulation operators on L2(G) are pointwise products with characters on
G [7,8,14], where characters are precisely the group homomorphisms from G into the
multiplicative group S1 = {z ∈ C : |z| = 1}. The set of all characters on G forms a
group under pointwise multiplication and this group is called the dual group of G and

is denoted by Ĝ [13].Thus for ξ ∈ Ĝ, the modulation operator Mξ : L2(G) → L2(G),
is given by Mξf(g) = ξ(g)f(g) for all g ∈ G.

We now take care of Gabor systems on L2(G), where G is a finite abelian group with

dual group Ĝ. A Gabor systems on L2(G) is a family G(ϕ,Λ) = {MξTgϕ : (g, ξ) ∈ Λ}
where Λ is a subset (preferably subgroup) of the product group G×Ĝ and if ϕ is a non
zero element in L2(G). A Gabor system which spans L2(G) is a frame and is called
a Gabor frame. The frame operator corresponding to the Gabor frame G(ϕ,Λ) is the
map S : L2(G)→ L2(G), given by S(f) =

∑
(g,ξ)∈Λ

〈f,MξTgϕ〉MξTgϕ; ∀ f ∈ L2(G).

4. Generalized pseudo B-Gabor frames on finite abelian groups

Continuing from the previous sections, here we will explore how to view a Gabor
frame in L2(G) using Gabor frames in L2(Γ). It is trivial that if G is a non cyclic
abelian group of order N then by fundamental theorem of algebra, G is isomorphic
to a direct product of the form Zm1 × Zm2 × · · · × Zmp , for some positive integers
m1,m2, . . . ,mp with m1m2 · · ·p = N . Let us denote this product group corresponding
to G by ΓG. To proceed with our discussions in this direction, the following result is
useful. Here onwards the abelian group G is taken as G = {g0, g1, ..., gN−1}.

Lemma 4.1. For each isomorphism f from ΓG onto G the map Bf : L2(ΓG) →
L2(G) defined by Bf (x)(gj) = x(f−1(gj)) for all gj ∈ G, is linear, bounded and unitary
with adjoint B∗f : L2(G) → L2(ΓG) given by B∗f (y)(r1, r2, ..., rp) = y(f(r1, r2, ..., rp))
for all (r1, r2, ..., rp) ∈ ΓG.

Proof. For x, y ∈ L2(ΓG) and c ∈ C
Bf (cx+ y)(gj) = (cx+ y)(f−1(gj))

= (cx)(f−1(gj)) + y(f−1(gj))

= c(x(f−1(gj))) + y(f−1(gj))

= cBf (x)(gj) +Bf (y)(gj)

= (cBfx+Bfy)(gj)

for j = 0, 1, . . . , n− 1.Thus Bf is linear.
Since both the spaces are finite dimensional it easily follows that Bf is bounded.
The map B∗f : L2(G)→ L2(ΓG) defined by B∗f (y)(r1, r2, ..., rp) = y(f(r1, r2, ..., rp)) for
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all (r1, r2, ..., rp) ∈ ΓG, is the adjoint of Bf . This can be verified as follows.
For x ∈ L2(ΓG) and y ∈ L2(G)

〈Bfx, y〉 =
N−1∑
j=0

Bfx(gj)y(gj)

=
N−1∑
j=0

x(f−1(gj))y(gj) .............(1)

〈x,B∗fy〉 =
∑

(r1,r2,...,rp)∈Λ

x(r1, r2, ..., rp)B∗fy(r1, r2, ..., rp)

=
∑

(r1,r2,...,rp)∈Λ

x(r1, r2, ..., rp)y(f(r1, r2, ..., rp))

=
N−1∑
j=0

x(f−1(gj))y(gj) ..............(2)

wheref(r1, r2, ..., rp) = gj.

from (1)and (2) we see that 〈Bfx, y〉 = 〈x,B∗fy〉; for all x ∈ L2(ΓG) and y ∈ L2(G).
Now

(B∗fBf )(x)(r1, r2, ..., rp) = Bfx(f(r1, r2, ..., rp))

= x(f−1(f(r1, r2, ..., rp)))

= x(r1, r2, ..., rp)

for all (r1, r2, ..., rp) ∈ ΓG and x ∈ L2(ΓG), showing that B∗fBf is identity on L2(ΓG).
Similarly

(BfB
∗
f )(η)(gj) = B∗fη(f−1(gj))

= η(f(f−1(gj)))

= η(gj)

for all gj ∈ G and η ∈ L2(G), showing that BfB
∗
f is identity on L2(G).

Now for l = (l1, l2, ......, lp) ∈ ΓG define ξl : G→ S1 by

ξl(g) = e
2πi[

l1r1
m1

+
l2r2
m2

+.....+
lprp
mp

]

where (r1, ..., rp) = f−1(g) , g ∈ G. It can be verified that ξl is a homomorphism.
For let gj, gk ∈ G, and (r1, r2, ..., rp) = f−1(gj) and (r′1, r

′
2, ..., r

′
p) = f−1(gk).

Then

f(r1 +m1 r
′
1, r2 +m2 r

′
2, ..., rp +mp r

′
p) = f(r1, r2, ..., rp) + f(r′1, r

′
2, ..., r

′
p) = gj ∗ gk

hence

ξl(gj)ξl(gk) = e
2πi[

l1r1
m1

+
l2r2
m2

+.....+
lprp
mp

]
e

2πi[
l1r
′
1

m1
+
l2r
′
2

m2
+.....+

lpr
′
p

mp
]

= e
2πi[

l1(r1+m1r
′
1)

m1
+
l2(r2+m2r

′
2)

m2
+.....+

lp(rp+mpr
′
p)

mp
]

= ξl(gj ∗ gk)
This proves that ξl is a homomorphism from G into S1.
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Also for l, k ∈ ΓG, if ξl = ξk then

e
2πi[

l1r1
m1

+
l2r2
m2

+.....+
lprp
mp

]
= e

2πi[
k1r1
m1

+
k2r2
m2

+.....+
kprp
mp

]

for all (r1, r2, ..., rp) ∈ ΓG.
If we choose r1 = 1, r2 = r3 = ..... = rp = 0 we will get l1 = k1. In a similar manner
we can show that lj = kj for all j = 1, 2, ..., p and hence l = k.
Thus we conclude that ξl 6= ξk for l 6= k. Hence {ξl : l ∈ ΓG}, is precisely the collection
of characters of G.
Upcoming Proposition reveals the action of the bounded linear transformation Bf and
its adjoint on modulations and translations.

Proposition 4.2. Let G be a finite abelian group and L2(ΓG), f and Bf are as in
Lemma 4.1. Also let Ml and Tk denotes the modulations and translations in L2(ΓG).
Then for k, l ∈ ΓG,

(i) BfMl = MξlBf

(ii) BfTk = TgkBf

(iii) B∗fMξl = MlB
∗
f

(iv) B∗fTgk = TkB
∗
f

where Mξl and Tgk are respectively the modulations and translations in L2(G) and ξl
are the characters of G as in previous discussion.

Proof. Let l ∈ Γ and gj ∈ G with f−1(gj) = (r1, r2, ..., rp). Then for all x ∈ L2(ΓG),

[(MξlBf )(x)](gj) = Mξl(Bf (x))(gj)

= e
2πi[

l1r1
m1

+
l2r2
m2

+.....+
lprp
mp

]
(x(f−1(gj)))

and

(BfMl)(x)(gj) = Bf (Ml(x))(gj)

= Ml(x)(f−1(gj))

= Ml(x)(r1, r2, ..., rp)

= e
2πi[

l1r1
m1

+
l2r2
m2

+.....+
lprp
mp

]
(x(r1, r2, ..., rp))

= e
2πi[

l1r1
m1

+
l2r2
m2

+.....+
lprp
mp

]
(x(f−1(gj)))

Thus BfMl = MξlBf .
Similarly if k ∈ Γ, gj, gk ∈ G with f−1(gj) = (r1, r2, ..., rp), f

−1(g−1
k ) = (q1, ..., qp),

rj − qj ≡ sj(mod mj) for j = 1, 2, ....., p and x ∈ L2(ΓG) then,

[(TgkBf )(x)](gj) = Tgk(Bf (x))(gj)

= (Bf (x))(gjg
−1
k )

= x(f−1(gjg
−1
k ))

= x(f−1(gj)− f−1(g−1
k ))

= x(s1, s2, ..., sp)
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and

(BfTk)(x)(gj) = Bf (Tk(x))(gj)

= Tk(x)f−1(gj)

= Tk(x)(r1, r2, ..., rp)

= x(s1, s2, ..., sp)

Hence, BfTk = TgkBf . Now,

[(B∗fMξl)(η)](r1, r2, ..., rp) = Mξl(η(f(r1, r2, ..., rp)))

= e
2πi[

l1r1
m1

+
l2r2
m2

+.....+
lprp
mp

]
(η(f(r1, r2, ..., rp)))

and

(MlB
∗
f )(η)(r1, r2, ..., rp) = Ml(B

∗
fη)(r1, r2, ..., rp)

= Ml(η(f(r1, r2, ..., rp)))

= e
2πi[

l1r1
m1

+
l2r2
m2

+.....+
lprp
mp

]
(η(f(r1, r2, ..., rp)))

Thus, B∗fMξl = MlB
∗
f

Again,

[(B∗fTgk)(η)](r1, r2, ..., rp) = Tgk(η(f(r1, r2, ..., rp)))

= Tgk(η(gr))

= (η(grg
−1
k ))

= (η(gq))

and

(TkB
∗
f )(η)(r1, r2, ..., rp) = Tk(B

∗
fη)(r1, r2, ..., rp)

= B∗f (η(q))

= (η(f(q1, q2, ..., qp)))

= η(gq)

hence, B∗fTgk = TkB
∗
f

Both unitary and non-unitary approaches hold equal importance in quantum field
theory, as demonstrated in [12]. In this regard, images of Gabor frames under unitary
and non unitary maps are equally significant, as is observed below.

Theorem 4.3. If G is a finite abelian group, then any Gabor frame in L2(G) can
be identified as a generalized pseudo B-Gabor frame in L2(G).

Proof. Let {MξlTgkϕ : (gk, ξl) ∈ G× Ĝ} be a Gabor frame in L2(G). From lemma
4.1, consider the map B : L2(ΓG) → L2(G) defined by B(x)(gj) = x(f−1(gj)) for all
gj ∈ G where f is an isomorphism from ΓG to G. Now using Proposition 4.2 we have,

{B−1(MξlTgkϕ) : (gk, ξl) ∈ G× Ĝ} = {(B−1MξlB)(B−1TgkB)B−1ϕ) : (gk, ξl) ∈ G× Ĝ}
= {MlTkB

−1ϕ : k, l ∈ ΓG}
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Since B is unitary and {MξlTgkϕ : (gk, ξl) ∈ G × Ĝ} is frame in L2(G), it is clear
that {MlTkB

−1ϕ : k, l ∈ Γ} is a frame in L2(ΓG) and hence a Gabor frame in L2(ΓG).
Thus

{MξlTgkϕ : (gk, ξl) ∈ G× Ĝ} = {B(MlTk(B
−1ϕ)) : k, l ∈ Γ}

= {MB
l T

B
k ϕ : k, l ∈ Γ}

That is, {MξlTgkϕ : (gk, ξl) ∈ G × Ĝ} is a generalised pseudo B-Gabor like frame in

L2(G). Since B is unitary it is trivial that {MξlTgkϕ : (gk, ξl) ∈ G×Ĝ} is a generalised
pseudo B-Gabor frame in L2(G)

Let Γ = Zm1 × Zm2 × ... × Zmp for some positive integers m1,m2, ....,mp. We make
the following nice observation about the Fourier transform F : L2(Γ) → L2(Γ) given
in [13] by,

F(g(r1, r2, ..., rp)) =

m1∑
i1=1

...

mp∑
ip=1

g(i1, i2, ..., ip)e
−2πi[

i1r1
m1

+...+
iprp
mp

]

for each (r1, r2, ..., rp) ∈ Γ.

Proposition 4.4. The Fourier transform F on L2(Γ) satisfies the relations; for
k, l ∈ Γ,
(i). FMl = TlF and (ii). FTk = M−kF ; where Ml, Tk are the modulation and
translation in L2(Γ) respectively.

Proof. For k, l ∈ Γ and for each (r1, r2, ..., rp) ∈ Γ

FMl(g(r1, r2, ..., rp))

=

m1∑
i1=1

...

mp∑
ip=1

Ml(g(i1, i2, ..., ip))e
−2πi[

i1r1
m1

+...+
iprp
mp

]

=

m1∑
i1=1

...

mp∑
ip=1

e
2πi[

l1i1
m1

+...+
lpip
mp

]
g(i1, i2, ..., ip)e

−2πi[
i1r1
m1

+...+
iprp
mp

]

=

m1∑
i1=1

...

mp∑
ip=1

e
−2πi[

(r1−l1)i1
m1

+...+
(rp−lp)ip

mp
]
g(i1, i2, ..., ip)

= TlF(g(r1, r2, ..., rp)), proving (i) and,
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FTk(g(r1, r2, ..., rp))

=

m1∑
i1=1

...

mp∑
ip=1

Tk(g(i1, i2, ..., ip))e
−2πi[

i1r1
m1

+...+
iprp
mp

]

=

m1∑
i1=1

...

mp∑
ip=1

e
−2πi[

i1r1
m1

+...+
iprp
mp

]
g(i1 − k1, i2 − k2, ..., ip − kp)

=

m1∑
i1=1

...

mp∑
ip=1

e
−2πi[

(i1−k1)r1
m1

+...+
(ip−kp)rp

mp
]
e
−2πi[

k1r1
m1

+...+
kprp
mp

]
g(i1 − k1, ..., ip − kp)

= e
−2πi[

k1r1
m1

+...+
kprp
mp

]
m1∑
i1=1

...

mp∑
ip=1

e
−2πi[

(i1−k1)r1
m1

+...+
(ip−kp)rp

mp
]
g(i1 − k1, ..., ip − kp)

= M−kF(g(r1, r2, ..., rp), this proves (ii).

From above Proposition we see that F on L2(Γ) does not commute with translations
and modulations on L2(Γ) but since F is unitary it is trivially true that F∗F commutes
with translations and modulations on L2(Γ).

Following result shows the existence of a non unitary operator A on L2(Γ) which
does not commute with translations and modulations on L2(Γ) but A∗A commutes
with translations and modulations on L2(Γ).

Theorem 4.5. For any Gabor frame {MlTkg : l, k ∈ Γ} in L2(Γ), there is a
non unitary operator A on L2(Γ) which does not commute with modulations and
translations involved in it but A∗A commutes with these involved modulations and
translations.

Proof. If {MlTkg : l, k ∈ Γ} is a non-Parseval Gabor frame in L2(Γ), take S as the
frame operator of the Gabor frame {MlTkg : l, k ∈ Γ} otherwise take S as the frame
operator of the Gabor frame {MlTkαg : l, k ∈ Γ} for some non zero complex number α
with |α| 6= 1. Then the frame operator S is non unitary. Define A : L2(Γ) −→ L2(Γ)
by A = SF where F is the Fourier transform on L2(Γ). Since S and F are in-
vertible, it is clear that A is invertible with inverse A−1 = F−1S−1. Since S is non
unitary it is clear that A is a non unitary operator. Also it follows that for k, l ∈ Γ,
ATk = SFTk = M−kSF = M−kA and AMl == SFMl = TlSF = TlA. Thus A does
not commute with the modulations and translations involved in the given frame.

Observe that, since S is self adjoint and F is unitary, A∗ = (SF)∗ = F−1S∗ = F−1S
and hence A∗A = F−1S2F . Using commutator relation from Proposition 4.4 we have
F−1Ml = T−lF−1 and F−1Tk = MkF−1 and hence, a direct simple calculation proves
that, A∗A commutes with Ml and Tk, for all k, l ∈ Γ.

Now we choose α = (α1, α2, . . . , αp) ∈ Γ with gcd(αj,mj) = 1 and define two oper-
ators Dα and D 1

α
on L2(Γ) by (Dαf)(r1, r2, . . . , rp) = f(t1, t2, . . . , tp) where αjrj ≡

tj(mod mj) and (D 1
α
f)(r1, r2, . . . , rp) = f(q1, q2, . . . , qp) where αjqj ≡ rj(mod mj) for

each f ∈ L2(Γ) and (r1, r2, ..., rp) ∈ Γ. It is obvious that Dα and D 1
α

are linear maps.

Now for f ∈ L2(Γ) and (r1, r2, ..., rp) ∈ Γ
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(DαD 1
α
)(f)(r1, r2, ..., rp) = Dα(f(q1, q2, ..., qp)) where αjqj ≡ rj(mod mj)

= f(r1, r2, ..., rp)
Also (D 1

α
Dα)(f)(r1, r2, ..., rp) = D 1

α
(f(t1, t2, ..., tp)); where αjrj ≡ tj(mod mj)

= f(r1, r2, ..., rp)
This shows that DαD 1

α
= D 1

α
Dα = I. That is Dα and D 1

α
are invertible maps with

D−1
α = D 1

α
.

For all f, g ∈ L2(Γ),

〈Dαf, g〉 =

m1∑
i1=1

· · ·
mp∑
ip=1

f(t1, t2, . . . , tp)g(i1, i2, . . . , ip); where αjij ≡ tj(mod mj)

= 〈f,D 1
α
g〉

That is D∗α = D 1
α

= D−1
α . This proves Dα is unitary.

For f ∈ L2(Γ) and k = (k1, k2, . . . , kp), l = (l1, l2, . . . , lp), (r1, r2, . . . , rp) ∈ Γ

TkDαf(r1, r2, . . . , rp) = Tk(f(t1, t2, . . . , tp)); whereαjrj ≡ tj(mod mj)

= f(s1, s2, . . . , sp), where tj − kj ≡ sj(mod mj)

= Dαf(q1, q2, . . . , qp); where αjqj ≡ sj(mod mj)

choose k′ = (k′1, k
′
2, . . . , k

′
p) ∈ Γ such that αjk

′
j ≡ kj(mod mj)

so that tj − kj ≡ sj(mod mj) becomes αjrj − αjk
′
j ≡ αjqj(mod mj) and hence

rj − k′j ≡ qj(mod mj) and TkDαf(r1, r2, . . . , rp) = DαTk′f(r1, r2, . . . , rp).
Thus TkDα = DαTk′ ; where αjk

′
j ≡ kj(mod mj)

.
Further, (DαMl)f(r1, r2, . . . , rp) = Mlf(t1, t2, . . . , tp); where αjrj ≡ tj(mod mj)

= e
2πi[

l1t1
m1

+ · · ·+ lptp
mp

]
f(t1, t2, . . . , tp)

αjrj ≡ tj(mod mj)⇒ αjrj − tj = cjmj; for some integer cj.⇒ tj = αjrj − cjmj;
therefor from the above expression,

(DαMl)f(r1, r2, . . . , rp) = e
2πi[

l1(α1r1 − c1m1)

m1

+ · · ·+ lp(αprp − cpmp)

mp

]
f(t1, t2, . . . , tp)

= e
2πi[

l1α1r1

m1

+ · · ·+ lpαprp
mp

]
e2πi[l1c1 + · · ·+ lpcp]f(t1, t2, . . . , tp)

= e
2πi[

l1α1r1

m1

+ · · ·+ lpαprp
mp

]
Dαf(r1, r2, . . . , rp)

= Ml′Dαf(r1, r2, . . . , rp);
where l′ = (l′1, l

′
2, . . . , l

′
p) ∈ Γ with αjlj ≡ l′j(mod mj)

Thus DαMl = Ml′Dα; where αjlj ≡ l′j(mod mj).

It follows from above discussions that if α = (α1, α2, . . . , αp) ∈ Γ, withαj 6= 1 for
some j ∈ {1, 2, . . . , p} and gcd(αj,mj) = 1 for all j ∈ {1, 2, . . . , p} then Dα does not
commute with modulations and translations in L2(Γ).

Interestingly, generalized pseudo C-Gabor like frames under non unitary maps C
are equally significant in L2(G), as is shown in the following observation.
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Theorem 4.6. For a finite abelian group G, the canonical dual frame of a non-
Parseval Gabor frame in L2(G) is a generalized pseudo C-Gabor like frame in L2(G)
where the map C : L2(ΓG) −→ L2(G) is non unitary.

Proof. Let G be a finite abelian group and G = {MξlTgkϕ : (gk, ξl) ∈ G × Ĝ} be
a non-Parseval Gabor frame in L2(G). By Theorem 4.3, G is the image of a Gabor
frame GΓG in ΓG under a unitary transformation U : L2(ΓG) −→ L2(G). The frame
GΓG is also non-Parseval with frame operator S 6= I, for otherwise G also will be a
Parseval frame since U is unitary.

Now, the frame operator of G is USU∗ = USU−1 and hence the canonical dual
frame of G is (USU−1)−1(G) = US−1U−1(G) = U(S−1(GΓG)) since U−1(G) = GΓG .
But U(S−1(GΓG)) = C(GΓG) where C = US−1 and is nonunitary, as desired.

Remark 4.7. By applying a multiplication function as in the proof of Theorem
4.5 to the Gabor frame GΓG in above proof it is clear that the statement of theorem
4.6 is also valid if we replace non-Parseval Gabor frame as Gabor frame.

Following theorem is a specific situation, which enables us to furnish the fact that
the operator B in Theorem 4.3 need not be unitary rather an invertible operator is
sufficient. For a finite abelian group G, let ΓG be as in first paragraph of this section
and Bf as in Lemma 4.1

Theorem 4.8. Let G be a finite abelian group. Then corresponding to any non-

Parseval Gabor frame {MξlTgkϕ : (gk, ξl) ∈ G × Ĝ} in L2(G) there is a non unitary
invertible map C : L2(ΓG) −→ L2(G) with the following properties.

(i) C = BA where A is a non-unitary map on L2(ΓG) and B is a unitary map
from L2(ΓG) to L2(G) so that A∗A commutes with the elements of the family
{MlTk : l, k ∈ ΓG} .

(ii) If G is not isomorphic to (Z2)p for any positive integer p, then A does not
commute with the elements of the family {MlTk : l, k ∈ ΓG} .

(iii) C∗C commutes with the elements of the family {MlTk : l, k ∈ ΓG}.
(iv) {MξlTgkϕ : (gk, ξl) ∈ G× Ĝ} is a generalized pseudo C-Gabor frame in L2(G)

Proof. Let G be a finite abelian group and {MξlTgkϕ : (gk, ξl) ∈ G × Ĝ} be a
Gabor frame in L2(G). Let us consider the map B as in Proposition 4.4. Then B
is a unitary map and {MlTkB

−1ϕ : k, l ∈ ΓG} is a Gabor frame in L2(ΓG). Let
S be the frame operator of {MlTkB

−1ϕ : k, l ∈ ΓG}, then S commutes with the
modulations and translations involved in this frame. Choose α = (α1, α2, . . . , αp) ∈ Γ
with gcd(αj,mj) = 1 and define the operators Dα as in discussion preceding to this
theorem. If possible take α so that αj 6= 1 for some j ∈ {1, 2, . . . , p}.

Define an operator A : L2(ΓG) → L2(ΓG) by A = SDα. Then A is an invertible
linear operator with A−1 = D 1

α
S−1. It is also trivial from the property of Dα that

if G is not isomorphic to (Z2)p for any positive integer p, then A does not commutes
with the elements of the family {MlTk : l, k ∈ ΓG} .

The adjoint of A is given by A∗ = D 1
α
S and hence A∗A = D 1

α
S2Dα. Thus for

all k, l ∈ ΓG, it is easy to see that, A∗A commutes with the elements of the family
{MlTk : l, k ∈ ΓG}.

Now define C : L2(ΓG) → L2(G) by C = BA. Then the C is invertible and
C∗ = (BA)∗ = A∗B∗ so that C∗C = A∗B∗BA = A∗A, because B is unitary as we
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have seen in Lemma 4.1. Hence the commutativity property of C∗C with modulation
Ml and translation Tk on L2(ΓG) follows from that of A∗A.
Also for each l, k ∈ ΓG

C−1Tgk = (BA)−1Tgk = A−1B−1Tgk

= D 1
α
S−1TkB

−1 = D 1
α
TkS

−1B−1

= Tk′D 1
α
S−1B−1 where αjk

′
j ≡ kj(mod mj)

= Tk′(BA)−1

= Tk′C
−1

and

C−1Mξl = (BA)−1Mξl = A−1B−1Mξl

= D 1
α
S−1MlB

−1 = D 1
α
MlS

−1B−1

= Ml′D 1
α
S−1B−1 where αjl

′
j ≡ lj(mod mj)

= Ml′(BA)−1

= Ml′C
−1

Since {MξlTgkϕ : (gk, ξl) ∈ G× Ĝ} is a Gabor frame in L2(G) and

{C−1(MξlTgkϕ)) : (gk, ξl) ∈ G× Ĝ}
= {Ml′Tk′C

−1ϕ : k, l ∈ ΓG, where αjl
′
j ≡ lj(mod mj) and αjk

′
j ≡ kj(mod mj)}

= {MlTkC
−1ϕ : k, l ∈ ΓG}.

It is clear that {MlTkC
−1ϕ : k, l ∈ ΓG} is a frame in L2(ΓG) and hence a Gabor

frame in L2(ΓG).
Also

{MξlTgkϕ : (gk, ξl) ∈ G× Ĝ} = {C(MlTk(C
−1ϕ)) : k, l ∈ ΓG}

= {(C(MlC
−1)(CTkC

−1)ϕ : k, l ∈ ΓG}
= {MC

l T
C
k ϕ : k, l ∈ ΓG}

That is, {MξlTgkϕ : (gk, ξl) ∈ G × Ĝ} is a generalized pseudo C-Gabor frame in
L2(G).

For a given finite abelian group G, not necessarily cyclic, Gabor frames in L2(G)
are generated by the actions of modulation and translation operators on an appro-
priate element in L2(G). In this article we recognized such natural Gabor frames as
generalized pseudo B- Gabor frames which are generated in L2(G) by mapping Gabor
frames from L2(Γ) using invertible linear transformations B : L2(Γ)→ L2(G), where
G is isomorphic to a direct product Γ of finite cyclic groups. While mapping a Gabor
frame from L2(Γ) to L2(G) through a linear transformation B : L2(Γ) → L2(G), the
image frame also will exhibit a structure similar to that of the original frame when-
ever B is invertible. The new class of generalized pseudo B-Gabor frames seems to
be larger than the class of Gabor frames in L2(G).
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