References
- Al-Mansob, R.A., Wong, W.F., Alsharef, J.M.A., Jassam, T.M., Ng, J.L., Albrka Ali, S.I. and Yusof, Z.B. Md. (2021), "Unconfined compressive strength characteristic of soft soil mixed with lime and nano alumina", AIP Conference Proceedings 2401. https://doi.org/10.1063/5.0073026.
- Anggraini, V., Asadi, A., Huat, B.B.K. and Nahazanan, H. (2015), "Effects of coir fibers on tensile and compressive strength of lime treated soft soil", Measurement, 59, 372-381. https://doi.org/10.1016/j.measurement.2014.09.059.
- Arora, A., Singh, B. and Kaur, P. (2019), "Performance of nanoparticles in stabilization of soil: A comprehensive review", Materials Today: Proceedings, 17, 124-130. https://doi.org/10.1016/j.matpr.2019.06.409.
- Aryal, S. and Kolay, P.K. (2020), "Long-term durability of ordinary portland cement and polypropylene fibre stabilized Kaolin soil using wetting-drying and freezing-thawing test", Int. J. Geosynthetics Ground Eng., 6(1), 1-15. https://doi.org/10.1007/s40891-020-0191-9.
- Asl, M.T. and Taherabadi, E. (2018), "Modification of silty clay strength in cold region's pavement using glass residue", Cold Reg. Sci. Tech., 154, 11-19. https://doi.org/10.1016/j.coldregions.2018.06.005.
- Bahadori, H., Ghalandarzadeh, A. and Towhata, I. (2008), "Effect of non plastic silt on the anisotropic behavior of sand", Soils Found., 48(4), 531-545. https://doi.org/10.3208/sandf.48.531.
- Bayat, M., Asgari, M.R. and Mousivand, M. (2013), "Effects of cement and lime treatment on geotechnical properties of a low plasticity clay", Proceedins of the International Conference on Civil Engineering Architecture & Urban Sustainable Development, 27-28 November, Tabriz, Iran Effects.
- Bayat, M. (2020a), "Effect of sand fouling on the dynamic properties and volume change of gravel during cyclic loadings", Periodica Polytechnica Civil Eng., https://doi.org/10.3311/PPci.15857.
- Bayat, M. (2020b), "Universal model forms for predicting the dynamic properties of granular soils", Acta Geodynamica et Geomaterialia, 217-227. https://doi.org/10.13168/AGG.2020.0016.
- Bayat, M. (2021), "Shear wave velocity in granular soil considering effects of inherent and stress-induced anisotropy", J. Central South Univ., 28(5), 1476-1492. https://doi.org/10.1007/s11771-021-4711-0.
- Bian, X., Zeng, L., Li, X., Shi, X., Zhou, S. and Li, F. (2021), "Fabric changes induced by super-absorbent polymer on cement-lime stabilized excavated clayey soil", J. Rock Mech. Geotech. Eng., 13(5), 1124-1135. https://doi.org/10.1016/j.jrmge.2021.03.006.
- Boz, A., Sezer, A., Ozdemir, T., Hizal, G.E. and Azdeniz Dolmaci, O. (2018), "Mechanical properties of lime-treated clay reinforced with different types of randomly distributed fibers", Arabian J. Geosci., 11(6). https://doi.org/10.1007/s12517-018-3458-x.
- Bozbey, I., Kelesoglu, M.K., Demir, B., Komut, M., Comez, S., Ozturk, T., Mert, A., Ocal, K. and Oztoprak, S. (2018), "Effects of soil pulverization level on resilient modulus and freeze and thaw resistance of a lime stabilized clay", Cold Reg. Sci. Tech., 151, 323-334. https://doi.org/10.1016/j.coldregions.2018.03.023.
- Cao, Z., Ma, Q. and Wang, H. (2019), "Effect of basalt fiber addition on static-dynamic mechanical behaviors and microstructure of stabilized soil compositing cement and fly ash", Adv. Civil Eng., 2019. https://doi.org/10.1155/2019/8214534.
- Chaduvula, U., Desai, A.K. and Solanki, C.H. (2014), "Application of triangular polypropylene fibres on soil subjected to freeze-thaw cycles", Indian Geotech. J., 44(3), 351-256. https://doi.org/10.1007/s40098-013-0088-9.
- Chen, S., Hou, X., Luo, T., Yu, Y. and Jin, L. (2022), Effects of MgO nanoparticles on dynamic shear modulus of loess subjected to freeze-thaw cycles", J. Mater. Res. Tech., 18, 5019-5031. https://doi.org/10.1016/j.jmrt.2022.05.013.
- Cheng, S., Wang, Q., Wang, J. and Han, Y. (2021), "Experimental study on undrained shear properties of saline soil under freeze-thaw cycles", Geofluids, 2021. https://doi.org/10.1155/2021/9987414.
- Chittoori, B.C.S., Puppala, A.J. and Pedarla, A. (2018), "Addressing clay mineralogy effects on performance of chemically stabilized expansive soils subjected to seasonal wetting and drying", J. Geotech. Geoenviron. Eng., 144(1), 04017097. https://doi.org/10.1061/(asce)gt.1943-5606.0001796.
- Choobbasti, A.J., Samakoosh, M.A. and Kutanaei, S.S. (2019), "Mechanical properties soil stabilized with nano calcium carbonate and reinforced with carpet waste fibers", Constr. Build. Mater., 211, 1094-1104. https://doi.org/10.1016/j.conbuildmat.2019.03.306.
- Consoli, N.C., Heineck, K.S., Casagrande, M.D.T. and Coop, M.R. (2007), "Shear strength behavior of fiber-reinforced sand considering triaxial tests under distinct stress paths", J. Geotech. Geoenviron. Eng., 133(11), 1466-1469. https://doi.org/10.1061/(asce)1090-0241(2007)133:11(1466).
- Du, H. and Pang, S.D. (2020), "High-performance concrete incorporating calcined kaolin clay and limestone as cement substitute", Constr. Build. Mater., 264. https://doi.org/10.1016/j.conbuildmat.2020.120152.
- Eshaghzadeh, M., Bayat, M., Ajalloeian, R. and Hejazi, S.M. (2021), "Mechanical behavior of silty sand reinforced with nanosilica-coated ceramic fibers", J. Adhesion Sci. Tech., 35(23), 2664-2683. https://doi.org/10.1080/01694243.2021.1898857.
- Estabragh, A.R., Ranjbari, S. and Javadi, A.A. (2017), "Properties of clay soil and soil cement reinforced with polypropylene fibers", ACI Mater. J., 114(2).
- Gao, L., Luo, Y., Ren, Z., Yu, X. and Wu, K. (2020), "Experimental study on dynamic properties of Nano-MgO-modified silty clay", Int. J. Geosynth. Ground Eng., 6(2). https://doi.org/10.1007/s40891-020-00210-5.
- Ghadir, P. and Ranjbar, N. (2018), "Clayey soil stabilization using geopolymer and Portland cement", Constr. Build. Mater., 188, 361-371. https://doi.org/10.1016/j.conbuildmat.2018.07.207.
- Ghanbari, M. and Bayat, M. (2022), "Effectiveness of reusing steel slag powder and polypropylene fiber on the enhanced mechanical characteristics of cement-stabilized sand", Civil Eng. Infrastruct. J., 1-19. https://doi.org/10.22059/CEIJ.2021.319310.1742.
- Gullu, H. and Khudir, A. (2014), "Effect of freeze-thaw cycles on unconfined compressive strength of fine-grained soil treated with jute fiber, steel fiber and lime", Cold Regions Sci. Tech., 106-107, 55-65. https://doi.org/10.1016/j.coldregions.2014.06.008.
- Hadi Sahlabadi, S., Bayat, M., Mousivand, M. and Saadat, M. (2021), "Freeze-thaw durability of cement-stabilized soil reinforced with polypropylene/basalt fibers", J. Mater. Civil Eng., 33(9), 04021232. https://doi.org/10.1061/(asce)mt.1943-5533.0003905.
- Heidarizadeh, Y., Lajevardi, S.H., Sharifipour, M. and Kamalian, M. (2021), "EExperimental characterization of the small strain shear modulus of soft clay stabilized with cement and nano-SiO2 using bender element tests", Bull. Eng. Geol. Environ., 80(3), 2523-2534. https://doi.org/10.1007/s10064-020-02096-z.
- Irina, K. and Timo, K. (2014), "The effect of carbon fibers, glass fibers and nanoclay on wood flour-polypropylene composite properties", Eur. J. Wood Wood Products, 72(1), 73-79. https://doi.org/10.1007/s00107-013-0754-8.
- Jahandari, S., Li, J., Saberian, M. and Shahsavarigoughari, M. (2017), "Experimental study of the effects of geogrids on elasticity modulus, brittleness, strength, and stress-strain behavior of lime stabilized kaolinitic clay", Geo. Res. J., 13, 49-58. https://doi.org/10.1016/j.grj.2017.02.001.
- Jassem, S. and Tabarsa, A. (2015), "Effect of adding nanoclay on the mechanical behaviour of fine-grained soil reinforced with polypropylene fibers", J. Struct. Eng. Geotechnics, 5(2), 59-67.
- Jiang, P., Chen, Y., Wang, W., Yang, J., Wang, H., Li, N. and Wang, W. (2022), "Flexural behavior evaluation and energy dissipation mechanisms of modified iron tailings powder incorporating cement and fibers subjected to freeze-thaw cycles", J. Cleaner Product., 351, 131527. https://doi.org/10.1016/j.jclepro.2022.131527.
- Jiang, P., Zhou, L., Zhang, W., Wang, W. and Li, N. (2022), "Unconfined compressive strength and splitting tensile strength of lime soil modified by nano clay and polypropylene fiber", Crystals, 12(2), 285. https://doi.org/10.3390/cryst12020285.
- Kalhor, A., Ghazavi, M., Roustaei, M. and Mirhosseini, S.M. (2019), "Influence of nano-SiO 2 on geotechnical properties of fine soils subjected to freeze-thaw cycles", Cold Reg. Sci. Tech., 161, 129-136. https://doi.org/10.1016/j.coldregions.2019.03.011.
- Kaniraj, S.R. and Havanagi,V.G. (2001), "Behavior of cement-stabilized fiber-reinforced fly ash-soil mixtures", J. Geotech. Geoenviron. Eng., 127(7), 574-584. https://doi.org/10.1016/10.1061/(asce)10900241(2001)127:7(574).
- Kulanthaivel, P., Soundara, B., Velmurugan, S. and Naveenraj, V. (2021), "Experimental investigation on stabilization of clay soil using nano-materials and white cement", Mater. Today: Proceedings, 45, 507-511. https://doi.org/10.1016/j.matpr.2020.02.107.
- Li, H. and Senetakis, K. (2017), "Dynamic properties of polypropylene fibre-reinforced silica quarry sand", Soil Dyn. Earthq. Eng., 100, 224-232. https://doi.org/10.1016/j.soildyn.2017.05.035.
- Liu, J., Bai, Y., Song, Z., Kanungo, D.P., Wang, Y., Bu, F., Chen, Z. and Shi, X. (2020), "Stabilization of sand using different types of short fibers and organic polymer", Constr. Build. Mater., 253, 119164. https://doi.org/10.1016/j.conbuildmat.2020.119164.
- Liu, Y., Chang, C.W., Namdar, A., She, Y., Lin, C.H., Yuan, X. and Yang, Q. (2019), "Stabilization of expansive soil using cementing material from rice husk ash and calcium carbide residue", Constr. Build. Mater., 221, 1-11. https://doi.org/10.1016/j.conbuildmat.2019.05.157.
- Lv, Q., Chang, C., Zhao, B. and Ma, B. (2018), "Loess soil stabilization by means of SiO2 nanoparticles", Soil Mech. Found. Eng., 54(6), 409-413. https://doi.org/10.1007/s11204-018-9488-2.
- Momeni, M., Bayat, M. and Ajalloeian, R. (2022), "Laboratory investigation on the effects of pH-induced changes on geotechnical characteristics of clay soil", Geomech. Geoeng., 17(1), 188-196. https://doi.org/10.1080/17486025.2020.1716084.
- Narani, S.S., Zare, P., Abbaspour, M., Fahimifar, A., Siddiqua, S. and Hosseini. S.M.M.M. (2021), "Evaluation of fiber-reinforced and cement-stabilized rammed-earth composite under cyclic loading", Constr. Build. Mater., 296, 123746. https://doi.org/10.1016/j.conbuildmat.2021.123746.
- Olgun, M. (2013), "Effects of polypropylene fiber inclusion on the strength and volume change characteristics of cement-fly ash stabilized clay soil", Geosynthetics Int., 20(4), 263-275. https://doi.org/10.1680/gein.13.00016.
- Orakoglu, M.E., Liu, J. and Niu, F. (2017), "Dynamic behavior of fiber-reinforced soil under freeze-thaw cycles", Soil Dynam. Earthq. Eng., 101, 269-284. https://doi.org/10.1016/j.soildyn.2017.07.022.
- Phanikumar, B.R. and Ramanjaneya Raju, E. (2020), "Compaction and strength characteristics of an expansive clay stabilised with lime sludge and cement", Soils Found., 60(1), 129-138. doi: https://doi.org/10.1016/j.sandf.2020.01.007.
- Pongsivasathit, S., Horpibulsuk, S. and Piyaphipat, S. (2019), "Assessment of mechanical properties of cement stabilized soils", Case Studies Constr. Mater., 11, e00301. https://doi.org/10.1016/j.cscm.2019.e00301.
- Pu, S., Zhu, Z. and Huo, W. (2021), "Evaluation of engineering properties and environmental effect of recycled gypsum stabilized soil in geotechnical engineering: A comprehensive review", Resour. Conserv. Recy., 174, 105780.
- Qi, J., Ma, W. and Song, C. (2008), "Influence of freeze-thaw on engineering properties of a silty soil", Cold Reg. Sci. Tech., 53(3), 397-404. https://doi.org/10.1016/j.coldregions.2007.05.010.
- Michalowski, R.L. and Cermak, J. (2005), "Triaxial compression of sand reinforced with fibers", J. Geotech. Geoenviron. Eng., 131(January), 210-213.
- Rezaei-Hosseinabadi, M.J., Bayat, M., Nadi, B. and Rahimi, A. (2022), "Utilisation of steel slag as a granular column to enhance the lateral load capacity of soil", Geomech. Geoeng., 17(5), 1406-1416. https://doi.org/10.1080/17486025.2021.1940315.
- Roustaei, M., Hendry, M., Ali Aghaei, E. and Bayat, M. (2021), "Shear modulus and damping ratio of clay soil under repeated freeze-thaw cycles", Acta Geodynamica et Geomaterialia 18(1), 71-81. https://doi.org/10.13168/AGG.2021.0005.
- Salehi, M., Bayat, M., Saadat, M. and Nasri, M. (2022), "PPrediction of unconfined compressive strength and California bearing capacity of cement-or lime-pozzolan-stabilised soil admixed with crushed stone waste", Geomech. Geoeng., 18(4), 272-283. https://doi.org/10.1080/17486025.2022.2040606.
- ShahriarKian, M.R., Kabiri, S. and Bayat, M. (2021), "Utilization of zeolite to improve the behavior of cement-stabilized soil", Int. J. Geosynthetics Ground Eng., 7(2), 35. https://doi.org/10.1007/s40891-021-00284-9.
- Sharma, K. and Kumar, A. (2021), "Influence of rice husk ash, lime and cement on compaction and strength properties of copper slag", Transport.Geotechnics, 27, 100464. https://doi.org/10.1016/j.trgeo.2020.100464.
- Shibi, T. and Kamei, T. (2014), "Effect of freeze-thaw cycles on the strength and physical properties of cement-stabilised soil containing recycled bassanite and coal ash", Cold Reg. Sci. Tech., 106-107, 36-45. https://doi.org/10.1016/j.coldregions.2014.06.005.
- Shokrieh, M.M., Saeedi, A. and Chitsazzadeh, M. (2013), "Mechanical properties of multi-walled carbon nanotube/polyester nanocomposites", J. Nanostruct. Chem., 3(1). https://doi.org/10.1186/2193-8865-3-20.
- Sukmak, P., Kunchariyakun, K., Sukmak, G., Horpibulsuk, S., Kassawat, S. and Arulrajah, A. (2019), "Strength and microstructure of palm oil fuel ash-fly ash-soft soil geopolymer masonry units", J. Mater. Civil Eng., 31(8), 04019164. https://doi.org/10.1061/(asce)mt.1943-5533.0002809.
- Tang, C., Shi, B., Gao, W., Chen, F. and Cai, Y. (2007), "Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil", Geotext. Geomembranes, 25(3), 194-202. https://doi.org/10.1016/j.geotexmem.2006.11.002.
- Thomas, G. and Rangaswamy, K. (2020), "Dynamic soil properties of nanoparticles and bioenzyme treated soft clay", Soil Dyn. Earthq. Eng., 137. https://doi.org/10.1016/j.soildyn.2020.106324.
- Tomar, A., Sharma, T. and Singh, S. (2019), "Strength properties and durability of clay soil treated with mixture of nano silica and polypropylene fiber", Materials Today: Proceedings, 26, 3449-3457. https://doi.org/10.1016/j.matpr.2019.12.239.
- Wang, T., Liu, Y., Yan, H. and Xu, L. (2015), "An experimental study on the mechanical properties of silty soils under repeated freeze-thaw cycles", Cold Reg. Sci. Tech., 112, 51-65. https://doi.org/10.1016/j.coldregions.2015.01.004.
- Wang, X., Wu, Y., Lu, Y., Cui, J., Wang, X. and Zhu, C. (2021), "Strength and dilatancy of coral sand in the South China Sea", Bull. Eng. Geol. Environ., 80(10), 8279-8299. https://doi.org/10.1007/s10064-021-02348-6.
- Yilmaz, Y. and Ozaydin, V. (2013), "Compaction and shear strength characteristics of colemanite ore waste modified active belite cement stabilized high plasticity soils", Eng. Geol., 155, 45-53. https://doi.org/10.1016/j.enggeo.2013.01.003.
- Yousefi, A., Aliaghaei, E., Kalhor, A., Jahanian, H. and Azadi, M. (2022), "The effect of freeze and thaw cycles on the dynamic properties of fine-grained soil Stabilized with nanocement", Int. J. Geotech. Eng., 16(10), 1221-1233. https://doi.org/10.1080/19386362.2022.2106678.
- Zhang, X., Gu, X., Lu, J. and Zhu, Z. (2016), "Experiment and simulation of creep performance of basalt fibre asphalt mortar under uniaxial compressive loadings", J. Southeast Univ., (English Edition), 32(4), 472-478. https://doi.org/10.3969/j.issn.1003-7985.2016.04.013.