참고문헌
- Amini, A., Baslamisli, S.C., Ince, B., Koprubasi, K. and Solmaz, S. (2018), "Parametric investigation of a hybrid vehicle's achievable fuel economy with optimization based energy management strategy", Adv. Autom. Eng., 1(1), 105-121. https://doi.org/10.12989/aae.2018.1.1.105.
- Asthana, S., Bansal, S., Jaggi, S. and Kumar, N. (2016), "A comparative study of recent advancements in the field of variable compression ratio engine technology", SAE Technical Paper.
- Castaneda, E.H., Romero, C.A. and Quintero, H.F. (2018), "Synthesis of a variable stroke slider crank mechanism for a reciprocating internal combustion engine", Contemp. Eng. Sci., 11(104), 5127-5146. https://doi.org/10.12988/ces.2018.811605
- Clenci, A. and Nicullescu, R. (2009), "On the compression ratio definition", The 8th International Congress ESFA, FISITA Bucuresti.
- Collee, V., Constensou, C., Dubois, F. and Guilly, L. (2017), "Variable compression ratio for future emission standards", MTZ Worldwide, 78(4), 52-57. https://doi.org/10.1007/s38313-017-0003-3.
- Galli, L.A. and Villalva, S.G. (2009), Maurilio De BortoliCassiani and Marco Lucio Bittencourt.
- Hoeltgebaum, T. (2016), Variable Compression Ratio Engines: A Mechanism Approach.
- Hoeltgebaum, T., Simoni, R. and Martins, D. (2016), "Reconfigurability of engines: A kinematic approach to variable compression ratio engines", Mech. Mach. Theory, 96, 308-322. https://doi.org/10.1016/j.mechmachtheory.2015.10.003.
- https://www.mce-5.com For the MCE's gear-based VCR solution.
- Itu, C., Scutaru, M.L., Pruncu, C.I. and Muntean, R. (2020), "Kinematic and dynamic response of a novel engine mechanism design driven by an oscillation arm", Appl. Sci., 10(8), 2733. https://doi.org/10.3390/app10082733.
- Kwak, S.W., Shim, J.K. and Mo, Y.K. (2020), "Kinematic conceptual design of in-line four-cylinder variable compression ratio engine mechanisms considering vertical second harmonic acceleration", Appl. Sci., 10(11), 3765. https://doi.org/10.3390/app10113765.
- Manescu, B., Dragomir, I., Stanescu, N.D. and Pandrea, N. (2017), "Study of the influence of geometric parameters on the displacement of piston and compression ratio for a variable compression ratio mechanism", Acta Technica NapocensisSeries: Appl. Math. Mech. Eng., 60(4), 1.
- Manescu, B., Dragomir, I., Stanescu, N.D., Pandrea, N., Clenci, A. and Popa, D. (2017), "Aspects in the synthesis of a variable compression ratio mechanism", IOP Conf. Ser.: Mater. Sci. Eng., 252(1), 012075. https://doi.org/10.1088/1757-899X/252/1/012075.
- Mo, Y.K., Shim, J.K., Kwak, S.W., Jo, M.S. and Park, H.S. (2020), "Type synthesis of variable compression ratio engine mechanisms", Appl. Sci., 10(18), 6574. https://doi.org/10.3390/app10186574.
- Musteata, M. and Bivol, L. (2010), Le moteur VCR MCE-5.
- Rabhi, V. (2006), U.S. Patent No. 7,013,849, U.S. Patent and Trademark Office, Washington, DC.
- Rabhi, V., Beroff, J. and Dionnet, F. (2004), "Study of a gear-based variable compression ratio engine", No. 2004-01-2931, SAE Technical Paper.
- Sakhraoui, A., Saggar, M., Ayari, F. and Nasri, R. (2024), "Kinematics modeling of the gear-based crank mechanism engine regardless of the compressions ratio variations", Scientif. Report., 14(1), 2807. https://doi.org/10.1038/s41598-024-53085-1.
- SIMDRIVE 3D Documentation. Available online: http://www.contecs-engineering.de (accessed on 15March 2020).
- Taylor, C.F. (1966), The Internal Combustion Engine. In theory And Practice, Volume 1, MIT Press, Cambrige, MA, USA.
- Vlase, S., Danasel, C., Scutaru, M.L., Mihalcica, M. (2014), "Finite element analysis of a two-dimensional linear elastic systems with a plane "Rigid Motion"", Rom. J. Phys., 59, 476-487.
- Wos, P., Balawender, K., Jakubowski, M., Kuszewski, H., Lejda, K. and Ustrzycki, A. (2012), "Design of affordable multicylinder variable compression ratio (VCR) engine for advanced combustion research purposes", SAE Technical Paper, No. 2012-01-0414.
- Yang, R., Wang, N. and Xiang, J. (2022), "No-backlash characteristics analysis of a cycloidal ball planetary transmission under axial pre-tightening", Struct. Eng. Mech., 81(4), 481-492. https://doi.org/10.12989/sem.2022.81.4.481.