DOI QR코드

DOI QR Code

GEOMETRIC INEQUALITIES FOR AFFINE CONNECTIONS ON RIEMANNIAN MANIFOLDS

  • Huiting Chang (School of Mathematics and Statistics Xinyang Normal University) ;
  • Fanqi Zeng (School of Mathematics and Statistics Xinyang Normal University)
  • Received : 2023.03.08
  • Accepted : 2023.09.22
  • Published : 2024.03.31

Abstract

Using a Reilly type integral formula due to Li and Xia [23], we prove several geometric inequalities for affine connections on Riemannian manifolds. We obtain some general De Lellis-Topping type inequalities associated with affine connections. These not only permit to derive quickly many well-known De Lellis-Topping type inequalities, but also supply a new De Lellis-Topping type inequality when the 1-Bakry-Emery Ricci curvature is bounded from below by a negative function. On the other hand, we also achieve some Lichnerowicz type estimate for the first (nonzero) eigenvalue of the affine Laplacian with the Robin boundary condition on Riemannian manifolds.

Keywords

References

  1. R. Avalos and A. Freitas, The Pohozaev-Schoen identity on asymptotically Euclidean manifolds: conservation laws and their applications, Ann. Inst. H. Poincare C Anal. Non Lineaire 38 (2021), no. 6, 1703-1724. https://doi.org/10.1016/j.anihpc.2021.01.002
  2. D. Bakry and M. Emery, Diffusions hypercontractives, in Seminaire de probabilites, XIX, 1983/84, 177-206, Lecture Notes in Math., 1123, Springer, Berlin, 1985. https://doi.org/10.1007/BFb0075847
  3. E. R. Barbosa, A note on the almost-Schur lemma on 4-dimensional Riemannian closed manifolds, Proc. Amer. Math. Soc. 140 (2012), no. 12, 4319-4322. https://doi.org/10.1090/S0002-9939-2012-11255-9
  4. Y. Chen, Y. Hu, and H. Li, Geometric inequalities for free boundary hypersurfaces in a ball, Ann. Global Anal. Geom. 62 (2022), no. 1, 33-45. https://doi.org/10.1007/s10455-022-09836-2
  5. J.-T. R. Chen, T. Saotome, and C.-T. Wu, The CR almost Schur lemma and Lee conjecture, Kyoto J. Math. 52 (2012), no. 1, 89-98. https://doi.org/10.1215/21562261-1503763
  6. X. Cheng, A generalization of almost-Schur lemma for closed Riemannian manifolds, Ann. Global Anal. Geom. 43 (2013), no. 2, 153-160. https://doi.org/10.1007/s10455-012-9339-8
  7. X. Cheng, An almost-Schur type lemma for symmetric (2, 0) tensors and applications, Pacific J. Math. 267 (2014), no. 2, 325-340. https://doi.org/10.2140/pjm.2014.267.325
  8. B. Chow, P. Lu, and L. Ni, Hamilton's Ricci Flow, Lectures in Contemporary Mathematics 3, Science Press, American Mathematical Society, 2006.
  9. F. Cruz Jr., A. Freitas, and M. Santos, De Lellis-Topping inequalities on weighted manifolds with boundary, Results Math. 77 (2022), no. 1, Paper No. 16, 14 pp. https://doi.org/10.1007/s00025-021-01549-5
  10. C. De Lellis and P. M. Topping, Almost-Schur lemma, Calc. Var. Partial Differential Equations 43 (2012), no. 3-4, 347-354. https://doi.org/10.1007/s00526-011-0413-z
  11. A. Freitas and M. Santos, Some almost-Schur type inequalities for k-Bakry-Emery Ricci tensor, Differential Geom. Appl. 66 (2019), 82-92. https://doi.org/10.1016/j.difgeo.2019.05.009
  12. Y. Ge, G. Wang, and C. Xia, On problems related to an inequality of Andrews, De Lellis, and Topping, Int. Math. Res. Not. IMRN 2013 (2013), no. 20, 4798-4818. https://doi.org/10.1093/imrn/rns196
  13. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2015.
  14. P. T. Ho, Almost Schur lemma for manifolds with boundary, Differential Geom. Appl. 32 (2014), 97-112. https://doi.org/10.1016/j.difgeo.2013.11.006
  15. G. Huang, B. Ma, and M. Zhu, A Reilly type integral formula and its applications, arXiv:2201.09439.
  16. G. Huang, B. Ma, and M. Zhu, Colesanti type inequalities for affine connections, Anal. Math. Phys. 13 (2023), no. 1, Paper No. 12, 15 pp. https://doi.org/10.1007/s13324-022-00773-8
  17. Q. Huang and Q. H. Ruan, Applications of some elliptic equations in Riemannian manifolds, J. Math. Anal. Appl. 409 (2014), no. 1, 189-196. https://doi.org/10.1016/j.jmaa.2013.07.004
  18. G. Huang and F. Zeng, De Lellis-Topping type inequalities for f-Laplacians, Studia Math. 232 (2016), no. 3, 189-199. https://doi.org/10.4064/sm8236-4-2016
  19. G. Huang and M. Zhu, Some geometric inequalities on Riemannian manifolds associated with the generalized modified Ricci curvature, J. Math. Phys. 63 (2022), no. 11, Paper No. 111508, 12 pp. https://doi.org/10.1063/5.0116994
  20. A. V. Kolesnikov and E. Milman, Brascamp-Lieb-type inequalities on weighted Riemannian manifolds with boundary, J. Geom. Anal. 27 (2017), no. 2, 1680-1702. https://doi.org/10.1007/s12220-016-9736-5
  21. A. V. Kolesnikov and E. Milman, Poincare and Brunn-Minkowski inequalities on the boundary of weighted Riemannian manifolds, Amer. J. Math. 140 (2018), no. 5, 1147-1185. https://doi.org/10.1353/ajm.2018.0027
  22. H. Li and Y. Wei, f-minimal surface and manifold with positive m-Bakry- Emery Ricci curvature, J. Geom. Anal. 25 (2015), no. 1, 421-435. https://doi.org/10.1007/s12220-013-9434-5
  23. J. Li and C. Xia, An integral formula for affine connections, J. Geom. Anal. 27 (2017), no. 3, 2539-2556. https://doi.org/10.1007/s12220-017-9771-x
  24. J. Li and C. Xia, An integral formula and its applications on sub-static manifolds, J. Differential Geom. 113 (2019), no. 3, 493-518. https://doi.org/10.4310/jdg/1573786972
  25. L. Ma and S.-H. Du, Extension of Reilly formula with applications to eigenvalue estimates for drifting Laplacians, C. R. Math. Acad. Sci. Paris 348 (2010), no. 21-22, 1203-1206. https://doi.org/10.1016/j.crma.2010.10.003
  26. M. Meng and S. Zhang, De Lellis-Topping type inequalities on smooth metric measure spaces, Front. Math. China 13 (2018), no. 1, 147-160. https://doi.org/10.1007/s11464-017-0670-z
  27. G. Qiu and C. Xia, A generalization of Reilly's formula and its applications to a new Heintze-Karcher type inequality, Int. Math. Res. Not. IMRN 2015 (2015), no. 17, 7608-7619. https://doi.org/10.1093/imrn/rnu184
  28. R. Reilly, Applications of the Hessian operator in a Riemannian manifold, Indiana Univ. Math. J. 26 (1977), no. 3, 459-472. https://doi.org/10.1512/iumj.1977.26.26036
  29. X.-A. Ren and H. W. Xu, A lower bound for first eigenvalue with mixed boundary condition, Appl. Math. J. Chinese Univ. Ser. B 19 (2004), no. 2, 223-228. https://doi.org/10.1007/s11766-004-0057-2
  30. J. Y. Wu, De Lellis-Topping type inequalities for smooth metric measure spaces, Geom. Dedicata 169 (2014), 273-281. https://doi.org/10.1007/s10711-013-9855-0
  31. F. Zeng, Some almost-Schur type inequalities and applications on sub-static manifolds, Electron. Res. Arch. 30 (2022), no. 8, 2860-2870. https://doi.org/10.3934/era.2022145