References
- R. Avalos and A. Freitas, The Pohozaev-Schoen identity on asymptotically Euclidean manifolds: conservation laws and their applications, Ann. Inst. H. Poincare C Anal. Non Lineaire 38 (2021), no. 6, 1703-1724. https://doi.org/10.1016/j.anihpc.2021.01.002
- D. Bakry and M. Emery, Diffusions hypercontractives, in Seminaire de probabilites, XIX, 1983/84, 177-206, Lecture Notes in Math., 1123, Springer, Berlin, 1985. https://doi.org/10.1007/BFb0075847
- E. R. Barbosa, A note on the almost-Schur lemma on 4-dimensional Riemannian closed manifolds, Proc. Amer. Math. Soc. 140 (2012), no. 12, 4319-4322. https://doi.org/10.1090/S0002-9939-2012-11255-9
- Y. Chen, Y. Hu, and H. Li, Geometric inequalities for free boundary hypersurfaces in a ball, Ann. Global Anal. Geom. 62 (2022), no. 1, 33-45. https://doi.org/10.1007/s10455-022-09836-2
- J.-T. R. Chen, T. Saotome, and C.-T. Wu, The CR almost Schur lemma and Lee conjecture, Kyoto J. Math. 52 (2012), no. 1, 89-98. https://doi.org/10.1215/21562261-1503763
- X. Cheng, A generalization of almost-Schur lemma for closed Riemannian manifolds, Ann. Global Anal. Geom. 43 (2013), no. 2, 153-160. https://doi.org/10.1007/s10455-012-9339-8
- X. Cheng, An almost-Schur type lemma for symmetric (2, 0) tensors and applications, Pacific J. Math. 267 (2014), no. 2, 325-340. https://doi.org/10.2140/pjm.2014.267.325
- B. Chow, P. Lu, and L. Ni, Hamilton's Ricci Flow, Lectures in Contemporary Mathematics 3, Science Press, American Mathematical Society, 2006.
- F. Cruz Jr., A. Freitas, and M. Santos, De Lellis-Topping inequalities on weighted manifolds with boundary, Results Math. 77 (2022), no. 1, Paper No. 16, 14 pp. https://doi.org/10.1007/s00025-021-01549-5
- C. De Lellis and P. M. Topping, Almost-Schur lemma, Calc. Var. Partial Differential Equations 43 (2012), no. 3-4, 347-354. https://doi.org/10.1007/s00526-011-0413-z
- A. Freitas and M. Santos, Some almost-Schur type inequalities for k-Bakry-Emery Ricci tensor, Differential Geom. Appl. 66 (2019), 82-92. https://doi.org/10.1016/j.difgeo.2019.05.009
- Y. Ge, G. Wang, and C. Xia, On problems related to an inequality of Andrews, De Lellis, and Topping, Int. Math. Res. Not. IMRN 2013 (2013), no. 20, 4798-4818. https://doi.org/10.1093/imrn/rns196
- D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2015.
- P. T. Ho, Almost Schur lemma for manifolds with boundary, Differential Geom. Appl. 32 (2014), 97-112. https://doi.org/10.1016/j.difgeo.2013.11.006
- G. Huang, B. Ma, and M. Zhu, A Reilly type integral formula and its applications, arXiv:2201.09439.
- G. Huang, B. Ma, and M. Zhu, Colesanti type inequalities for affine connections, Anal. Math. Phys. 13 (2023), no. 1, Paper No. 12, 15 pp. https://doi.org/10.1007/s13324-022-00773-8
- Q. Huang and Q. H. Ruan, Applications of some elliptic equations in Riemannian manifolds, J. Math. Anal. Appl. 409 (2014), no. 1, 189-196. https://doi.org/10.1016/j.jmaa.2013.07.004
- G. Huang and F. Zeng, De Lellis-Topping type inequalities for f-Laplacians, Studia Math. 232 (2016), no. 3, 189-199. https://doi.org/10.4064/sm8236-4-2016
- G. Huang and M. Zhu, Some geometric inequalities on Riemannian manifolds associated with the generalized modified Ricci curvature, J. Math. Phys. 63 (2022), no. 11, Paper No. 111508, 12 pp. https://doi.org/10.1063/5.0116994
- A. V. Kolesnikov and E. Milman, Brascamp-Lieb-type inequalities on weighted Riemannian manifolds with boundary, J. Geom. Anal. 27 (2017), no. 2, 1680-1702. https://doi.org/10.1007/s12220-016-9736-5
- A. V. Kolesnikov and E. Milman, Poincare and Brunn-Minkowski inequalities on the boundary of weighted Riemannian manifolds, Amer. J. Math. 140 (2018), no. 5, 1147-1185. https://doi.org/10.1353/ajm.2018.0027
- H. Li and Y. Wei, f-minimal surface and manifold with positive m-Bakry- Emery Ricci curvature, J. Geom. Anal. 25 (2015), no. 1, 421-435. https://doi.org/10.1007/s12220-013-9434-5
- J. Li and C. Xia, An integral formula for affine connections, J. Geom. Anal. 27 (2017), no. 3, 2539-2556. https://doi.org/10.1007/s12220-017-9771-x
- J. Li and C. Xia, An integral formula and its applications on sub-static manifolds, J. Differential Geom. 113 (2019), no. 3, 493-518. https://doi.org/10.4310/jdg/1573786972
- L. Ma and S.-H. Du, Extension of Reilly formula with applications to eigenvalue estimates for drifting Laplacians, C. R. Math. Acad. Sci. Paris 348 (2010), no. 21-22, 1203-1206. https://doi.org/10.1016/j.crma.2010.10.003
- M. Meng and S. Zhang, De Lellis-Topping type inequalities on smooth metric measure spaces, Front. Math. China 13 (2018), no. 1, 147-160. https://doi.org/10.1007/s11464-017-0670-z
- G. Qiu and C. Xia, A generalization of Reilly's formula and its applications to a new Heintze-Karcher type inequality, Int. Math. Res. Not. IMRN 2015 (2015), no. 17, 7608-7619. https://doi.org/10.1093/imrn/rnu184
- R. Reilly, Applications of the Hessian operator in a Riemannian manifold, Indiana Univ. Math. J. 26 (1977), no. 3, 459-472. https://doi.org/10.1512/iumj.1977.26.26036
- X.-A. Ren and H. W. Xu, A lower bound for first eigenvalue with mixed boundary condition, Appl. Math. J. Chinese Univ. Ser. B 19 (2004), no. 2, 223-228. https://doi.org/10.1007/s11766-004-0057-2
- J. Y. Wu, De Lellis-Topping type inequalities for smooth metric measure spaces, Geom. Dedicata 169 (2014), 273-281. https://doi.org/10.1007/s10711-013-9855-0
- F. Zeng, Some almost-Schur type inequalities and applications on sub-static manifolds, Electron. Res. Arch. 30 (2022), no. 8, 2860-2870. https://doi.org/10.3934/era.2022145