DOI QR코드

DOI QR Code

THE AMPHICHEIRAL 2-BRIDGE KNOTS WITH SYMMETRIC UNION PRESENTATIONS

  • Toshifumi Tanaka (Department of Mathematics Faculty of Education Gifu University)
  • Received : 2023.03.05
  • Accepted : 2023.07.21
  • Published : 2024.03.31

Abstract

In this paper, we characterize amphicheiral 2-bridge knots with symmetric union presentations and show that there exist infinitely many amphicheiral 2-bridge knots with symmetric union presentations with two twist regions. We also show that there are no amphicheiral 3-stranded pretzel knots with symmetric union presentations.

Keywords

Acknowledgement

The author is partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research(C), 2022-2024(22K03310).

References

  1. S. Baader, A. Kjuchukova, L. Lewark, F. Misev, and A. Ray, Average four-genus of two-bridge knots, to appear in Proc. Amer. Math. Soc. https://doi.org/10.1090/proc/14784
  2. P. R. Cromwell, Knots and Links, Cambridge Univ. Press, Cambridge, 2004. https://doi.org/10.1017/CBO9780511809767
  3. M. Eisermann and C. Lamm, Equivalence of symmetric union diagrams, J. Knot Theory Ramifications 16 (2007), no. 7, 879-898. https://doi.org/10.1142/S0218216507005555
  4. J. Greene and S. Jabuka, The slice-ribbon conjecture for 3-stranded pretzel knots, Amer. J. Math. 133 (2011), no. 3, 555-580. https://doi.org/10.1353/ajm.2011.0022
  5. A. Juh'asz, M. Miller, and I. Zemke, Knot cobordisms, bridge index, and torsion in Floer homology, J. Topol. 13 (2020), no. 4, 1701-1724. https://doi.org/10.1112/topo.12170
  6. L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395-407. https://doi.org/10.1016/0040-9383(87)90009-7
  7. A. Kawauchi, A survey of knot theory, translated and revised from the 1990 Japanese original by the author, Birkhauser Verlag, Basel, 1996. https://doi.org/10.1007/978-3-0348-9227-8
  8. S. Kinoshita and H. Terasaka, On unions of knots, Osaka Math. J. 9 (1957), 131-153. https://doi.org/10.18910/5026
  9. F. C. Kose, On amphichirality of symmetric unions, preprint, arXiv:2111.08765, 2021. https://doi.org/10.48550/arXiv.2111.08765
  10. C. Lamm, Symmetric unions and ribbon knots, Osaka J. Math. 37 (2000), no. 3, 537-550. http://projecteuclid.org/euclid.ojm/1200789356
  11. C. Lamm, Symmetric union presentations for 2-bridge ribbon knots, J. Knot Theory Ramifications 30 (2021), no. 12, Paper No. 2141009, 11 pp. https://doi.org/10.1142/S0218216521410091
  12. C. Lamm, The search for nonsymmetric ribbon knots, Exp. Math. 30 (2021), no. 3, 349-363. https://doi.org/10.1080/10586458.2018.1540313
  13. W. B. R. Lickorish, An introduction to knot theory, Graduate Texts in Mathematics, 175, Springer, New York, 1997. https://doi.org/10.1007/978-1-4612-0691-0
  14. P. Lisca, Lens spaces, rational balls and the ribbon conjecture, Geom. Topol. 11 (2007), 429-472. https://doi.org/10.2140/gt.2007.11.429
  15. C. Livingston and A. H. Moore, KnotInfo: Table of Knot Invariants, knotinfo.math.indiana.edu, March 3, 2023.
  16. D. Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, CA, 1976.
  17. T. Tanaka, The Jones polynomial of knots with symmetric union presentations, J. Korean Math. Soc. 52 (2015), no. 2, 389-402. https://doi.org/10.4134/JKMS.2015.52.2.389