DOI QR코드

DOI QR Code

Effect of Limestone Fineness on Physical Properties and Environmental Impact of Cement

석회석의 분말도가 시멘트의 물리적 특성 및 환경에 미치는 영향

  • In-Gyu Kang (Department of Architectural Engineering, Kongju National University) ;
  • Jin-Man Kim (Department of Green Smart Architectural Engineering, Kongju National University) ;
  • Sang-Chul Shin (Eco Friendly Concrete Research Center, Kongju National University) ;
  • Geon-Woo Kim (Department of Architectural Engineering, Kongju National University) ;
  • Tae-Yun An (Department of Architectural Engineering, Kongju National University)
  • 강인규 (국립공주대학교 건축공학과) ;
  • 김진만 (국립공주대학교 그린스마트건축공학과) ;
  • 신상철 (국립공주대학교 친환경콘크리트연구소) ;
  • 김건우 (국립공주대학교 건축공학과) ;
  • 안태윤 (국립공주대학교 건축공학과)
  • Received : 2024.01.29
  • Accepted : 2024.02.21
  • Published : 2024.03.30

Abstract

Since the cement industry generates more than 60 % of CO2 during the clinker production process, supplementary cementitious materials are used worldwide to reduce CO2 efficiently. Mainly used supplementary cementitious materials such as blast furnace slag and fly ash, which are used in various industries including the cement industry, concrete admixtures, and ground solidification materials. However, since their availability is expected to decrease in the future according to the carbon neutrality strategy of each industry, new supplementary cementitious materials should be used to achieve the cement industry's goal for increasing the additive content of Portland cement. Limestone is a material that already has a large amount in the cement industry and has the advantage of high grinding efficiency, so overseas developed countries established Portland limestone cement standards and succeeded in commercialization. This study was an experimental study conducted to evaluate the possibility of utilizing domestic PLC, the effect of fineness and replacement ratio on the physical properties of cement was investigated, and the environmental impact of cement was evaluated by analyzing CO2 emissions.

시멘트 산업은 클링커 생산 과정에서 약 60 % 이상의 CO2가 발생하며 이러한 많은 양의 CO2를 효율적으로 저감 시키기 위해 범세계적으로 시멘트 대체 재료가 활용되고 있다. 대표적으로 활용되는 시멘트 대체 재료는 고로슬래그와 플라이애시가 있으며, 이들은 시멘트 산업을 비롯한 콘크리트용 혼화재료, 지반 고화재 등 다양한 산업에서도 활용되고 있다. 하지만, 각 산업의 탄소중립 전략에 따라 향후 이들의 가용성은 낮아질 것으로 전망되고 있기 때문에 시멘트 산업의 보통포틀랜드시멘트 혼합재 함량 증대 목표를 달성하기 위해서는 새로운 시멘트 대체 재료를 활용해야 한다. 석회석은 이미 시멘트 산업에서 다량 보유하고 있는 재료로 가용성 측면에서 장점이 있으며 분쇄효율이 높아, 해외 선진국에서는 이미 포틀랜드 석회석 시멘트를 표준으로 제정하여 상용화하고 있다. 이와 같은 배경에서 본 연구에서는 국내 PLC의 활용 가능성을 평가하기 위해 석회석의 분말도와 치환율이 시멘트의 물리적 특성에 미치는 영향을 분석하였으며, 탄소중립 관점에서 CO2 배출량을 분석하여 시멘트의 환경 영향 평가를 수행하였다.

Keywords

Acknowledgement

이 연구는 공주대학교 2021년 하반기 연구년 사업에 의하여 연구되었음. 또한, 이 연구는 2023년도 산업통상부의 재원으로 한국산업기술평가 관리원-탄소중립산업핵심기술개발사업의 지원을 받아 수행된 연구임(RS-2023-00263550).

References

  1. Adu-Amankwah, S., Zajac, M., Stabler, C., Lothenbach, B., Black, L. (2017). Influence of limestone on the hydration of ternary slag cements, Cement and Concrete Research, 100, 96-109. https://doi.org/10.1016/j.cemconres.2017.05.013
  2. Andres, A., Marland, G., Boden, T., Bischof, S. (2017). National CO2 Emissions From Fossil-Fuel Burning, Cement Manufacture and Gas Flaring : 1751-2014, US Department of Energy.
  3. ASTM International (2021). ASTM C595 Standard Specification for Blended Hydraulic Cements.
  4. ASTM International (2018). ASTM C596 Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement.
  5. Aqel, M., Panesar, D.K. (2016). Hydration kinetics and compressive strength of steam-cured cement pastes and mortars containing limestone filler, Construction and Building Materials, 113, 359-368. https://doi.org/10.1016/j.conbuildmat.2016.03.031
  6. Berodier, E., Scrivener, K. (2014). Understanding the filler effect on the nucleation and growth of C-S-H, Journal of the American Ceramic Society, 97(12), 3764-3773.
  7. Birol, F. (2018). Technology Roadmap Low-Carbon Transition in the Cement Industry, International Energy Agency.
  8. Briki, Y., Zajac, M., Haha, M.B., Scrivener, K. (2021). Impact of limestone fineness on cement hydration at early age, Cement and Concrete Research, 147, 106515.
  9. Canadian Standards Association (2018). CSA A3001 Cementitious Materials for Use in Concrete.
  10. Chau, C.K., Leung, T.M., Ng, W.Y. (2015). A review on life cycle assessment, life cycle energy assessment and life cycle carbon emissions assessment on buildings, Applied Energy, 143, 395-413. https://doi.org/10.1016/j.apenergy.2015.01.023
  11. Das, S., Aguayo, M., Dey, V., Kachala, R., Mobasher, B., Sant, G., Neithalath, N. (2014). The fracture response of blended formulations containing limestone powder: evaluations using two-parameter fracture model and digital image correlation, Cement and Concrete Composites, 53, 316-326. https://doi.org/10.1016/j.cemconcomp.2014.07.018
  12. De Schutter, G. (2011). Effect of limestone filler as mineral addition in self-compacting concrete, 36th Conference on Our World in Concrete & Structures : Recent Advances in the Technology of Fesh Concrete, 49-54.
  13. Escalante-Garcia, J.I., Sharp, J.H. (1998). Effect of temperature on the hydration of the main clinker phases in portland cements: part ii, blended cements, Cement and Concrete Research, 28(9), 1259-1274. https://doi.org/10.1016/S0008-8846(98)00107-0
  14. European Committee for Standardization (2011). EN 197-1 Cement - Part 1 Composition, Specifications and Uniformity Criteria for Common Cements.
  15. Favier, A., De Wolf, C., Scrivener, K., Habert, G. (2018). A Sustainable Future for the European Cement and Concrete Industry-Technology Assessment for Full Decarbonisation of the Industry by 2050, ETH Zurich.
  16. Hooton, R.D., Nokken, M., Thomas, M.D.A. (2007). Portland-Limestone Cement:State-of-the-Art Report and Gap Analysis For CSA A 3000, Cement Association of Canada, 6-7.
  17. Isaia, G.C, Gastaldini, A.L.G., Moraes, R. (2003). Physical and pozzolanic action of mineral additions on the mechanical strength of high-performance concrete, Cement and Concrete Composites, 25(1), 69-76.
  18. John, E., Matschei, T., Stephan, D. (2018). Nucleation seeding with calcium silicate hydrate - a review, Cement and Concrete Research, 113, 74-85.
  19. Kadri, E.H., Aggoun, S., De Schutter, G., Ezziane, K. (2010). Combined effect of chemical nature and fineness of mineral powders on Portland cement hydration, Materials and Structures, 43, 665-673. https://doi.org/10.1617/s11527-009-9519-6
  20. Korea Standard Association (2021). KS L 5201 Portland Cement [in Korean].
  21. Korea Standard Association (2022a). KS L ISO 679 Cement-Test Methods-Determination of Strength [in Korean].
  22. Korea Standard Association (2022b). KS L 5105 Test Method for Compressive Strength of Hydraulic Cement Mortar [in Korean].
  23. Korea Standard Association (2022c). KS F 2436 Standard Test Method for Setting Times of Concrete Mixture by Penetration Resistance [in Korean].
  24. Lee, J.K., Chu, Y.S., Song, H. (2011). Effect of limestone powder on hydration of C3A-CaSO4.2H2O system, Journal of the Korean Ceramic Society, 48(6), 584-588 [in Korean].
  25. Lee, S.H., Kim, H.J., Sakai, E., Daimon, M. (2003). Effect of particle size distribution of fly ash-cement system on the fluidity of cement pastes, Cement and Concrete Research, 33(5), 763-768. https://doi.org/10.1016/S0008-8846(02)01054-2
  26. Leeuwen, R.V., Kim, Y.J., Sriraman, V. (2016). The effects of limestone powder particle size on the mechanical properties and the life cycle assessment of concrete, Journal of Civil Engineering Research, 6(4), 104-113.
  27. Lothenbach, B., Le Saout, G., Gallucci, E., Scrivener, K. (2008). Influence of limestone on the hydration of Portland cements, Cement and Concrete Research, 38(6), 848-860. https://doi.org/10.1016/j.cemconres.2008.01.002
  28. Lothenbach, B., Scrivener, K., Hooton, R.D. (2011). Supplementary cementitious materials, Cement and Concrete Research, 41(12), 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001
  29. Manjunatha, M., Preethi, S., Mounika, H.G., Niveditha, K.N. (2021). Life cycle assessment (LCA) of concrete prepared with sustainable cement based materials, Materials Today: Proceedin gs, 47(13), 3637-3644. https://doi.org/10.1016/j.matpr.2021.01.248
  30. Mindess, S., Young, J.F., Darwin, D. (2003). Concrete, Pearson. 
  31. Moon G.D., Oh, S.W., Jung, S.H., Choi, Y.C. (2017). Effects of the fineness of limestone powder and cement on the hydration and strength development of PLC concrete, Construction and Building Materials, 135, 129-136. https://doi.org/10.1016/j.conbuildmat.2016.12.189
  32. Meddah, M.S., Lmbachiya, M.C., Dhir, R.K. (2014). Potential use of binary and composite limestone cements in concrete production, Construction and Building Materials, 58, 193-205. https://doi.org/10.1016/j.conbuildmat.2013.12.012
  33. Pan, S.Y., Lai, B., Ren, Y. (2019). Mechanistic insight into mineral carbonation and utilization in cement-based materials at solid-liquid interfaces, RSC Advances, 9(53), 31052-31061. https://doi.org/10.1039/C9RA06118E
  34. Presidential Commission on Carbon Neutrality and Green Growth (2021). 2050 Carbon Neutral Scenario [in Korean].
  35. Ramezanianpour, A.A., Ghiasvand, E., Nickseresht, I., Mahdikhanim M., Moodi, F. (2009). Influence of various amounts of limestone powder on performance of Portland limestone cement concretes, Cement and Concrete Composites, 31(10), 715-720. https://doi.org/10.1016/j.cemconcomp.2009.08.003
  36. Rode, S., Oyabu, N., Kobayashi, K., Yamada, H., Kuhnle, A. (2009). True atomic-resolution imaging of (1014) calcite in aqueous solution by frequency modulation atomic force microscopy, Langmuir, 25(5), 2850-2853. https://doi.org/10.1021/la803448v
  37. Rosyid, A., Boedisantoso, R., Iswara, A.P. (2020). Environmental Impact Studied using life cycle assessment on cement industry, IOP Conference Series: Earth and Environmental Science, 506(1), 012024
  38. Sakai, H., Hoshimo, S., Ohba, Y., Daimon, M. (1997). The fluidity of cement paste with various types of inorganic powders, Proceedings of the 10th International Congress on the Chemistry of Cement, 19-26.
  39. Scholer, A., Lothenbach, B., Winnefeld, F., Haha, M.B., Zajac, M., Ludwig, H.M. (2017). Early hydration of SCM-blended Portland cements: a pore solution and isothermal calorimetry study, Cement and Concrete Research, 93, 71-82. https://doi.org/10.1016/j.cemconres.2016.11.013
  40. Senhadji, Y., Escadeillas, G., Mouli, M., Khelafi, H. (2014). Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar, Powder Technology, 254, 314-323.
  41. Shalan, A., Kahn, L.F., Kurtis, K., Nadelman, E. (2016). Assessment of High Early Strength Limestone Blended Cement for Next Generation Transportation Structures : Final Report, Georgia Department of Transportation.
  42. Soroka, I., Stern, N. (1976). Calcareous fillers and the compressive strength of Portland cement, Cement and Concrete Research, 6(3), 367-376. https://doi.org/10.1016/0008-8846(76)90099-5
  43. Stafford, F.N., Dias, A.C., Arroja, L., Labrincha, J.A., Hotza, D. (2016). Life cycle assessment of the production of Portland cement: a Southern Europe case study, Journal of Cleaner Production, 126, 159-165.
  44. The Government of the Republic of Korea (2020). 2050 Carbon Neutral Strategy of the Republic of Korea Towards a Sustainable and Green Society, Seoul, 6-128 [in Korean].
  45. Wang, D., Shi, C., Farzadnia, N., Shi, Z., Jia, H., Ou, Z. (2018). A review on use of limestone powder in cement-based materials: mechanism, hydration and microstructures, Construction and Building Materials, 181, 659-672. https://doi.org/10.1016/j.conbuildmat.2018.06.075
  46. Zajac, M., Rossberg, A., Le Saout, G., Lothenbach, B. (2014). Influence of limestone and anhydrite on the hydration of Portland cements, Cement and Concrete Composites, 46, 99-108. https://doi.org/10.1016/j.cemconcomp.2013.11.007