DOI QR코드

DOI QR Code

An Investigation into Ultrasonic Flotation Separation of Spent MgO-C Refractories Using Acetic Acid

아세트산을 활용한 폐 마그카본(MgO-C) 내화물의 초음파 부상 분리에 관한 연구

  • Yunki Byeun (Steelmaking research group, Technical Research Laboratories, POSCO)
  • 변윤기 (포스코 기술연구원 제강연구그룹)
  • Received : 2023.12.27
  • Accepted : 2024.01.24
  • Published : 2024.03.30

Abstract

A novel approach is presented to address issues associated with the use of strong acidic solutions for the leaching of magnesium oxide (MgO) from spent magnesia-carbon refractories. An ultrasonic flotation and separation process is employed, with a mildly acidic solvent, acetic acid, used to selectively chelate MgO from the spent refractories. When using 2 M acetic acid as a solvent, the recovery of the graphite exhibited 99.7 % with high purity of 72.7 %, showing a significant improvement compared to using water as the solvent. Furthermore, the technology presented in this study offers a method for producing magnesium acetate through the reaction of MgO in spent refractory with acetic acid, providing a means for the purification and separation of graphite.

본 연구에서는 제철공정에서 발생되는 산업폐기물인 폐 MgO-C 내화물로부터 고순도 흑연을 재생하기 위해 산화마그네슘(MgO)을 용해 할 목적으로 사용되는 강 산성용액을 대체하기 위해 상대적으로 약 산성용매인 아세트산 용매를 사용하는 새로운 접근 방식을 제시 하였다. 폐내화물에서 MgO만 선택적으로 킬레이트 하는 아세트산의 농도를 달리하고 초음파 부상분리법 통해 높은 실수율 재생 흑연을 정제 회수 할수 있었다. 특히 2 M 아세트산을 용매를 사용 한 경우 흑연의 회수율은 99.7 %를 나타내며 회수된 흑연의 순도는 72.7 %로 분석되었으며 물을 용매로 사용한 공정에 대비하여 상당한 개선방법을 확보하였다. 또한, 본 연구에서 제시된 기술은 폐내화물 내 MgO와 아세트산의 반응을 통해 아세트산마그네슘을 생산하는 방법을 제공하여 고효율의 흑연 정제 및 분리와 마그네슘 추출을 위한 자원을 함께 제공할 수 있을 것으로 기대한다.

Keywords

References

  1. Aphane, M.E. (2007). The Hydration of Magnesium Oxide with Different Reactivities by Water and Magnesium Acetate, Ph.D Thesis.
  2. Badawy, S.M. (2016). Synthesis of high-quality graphene oxide from spent mobile phone batteries, Environmental Progress & Sustainable Energy, 35(5), 1485-1491. https://doi.org/10.1002/ep.12362
  3. Faghihi-Sani, M.A., Yamaguchi, A. (2002). Effect of Al and alumina additions on oxidation rate of mgO-C refractory, Journal of the Ceramic Society of Japan, 110(1284), 699-702. https://doi.org/10.2109/jcersj.110.699
  4. Ilango, N.K., Nguyen, H., German, A., Winnefeld, F., Kinnunen, P. (2024). Role of magnesium acetate in hydration and carbonation of magnesium oxide-based cements, Cement and Concrete Research, 175, 107357.
  5. Kim, H.J., Kim, D.S. (2011). The effect of temperature on the stable region of magnesium ion in aqueous system, Journal of Korean Society on Water Environment, 27(4), 438-444. https://doi.org/10.15681/KSWE.2011.27.4.7
  6. Lee, J.S., Kim, S.K. (2023). Techno-economic analysis on the present and future of secondary battery market for electric vehicles and ESS, Journal of Information Technology Applications & Management, 30(1), 1-9.
  7. Lee, J.W., Duh, J.G. (2003). High-temperature MgO-C-Al refractories-metal reactions in high-aluminum-content alloy steels, Journal of Materials Research, 18, 1950-1959. https://doi.org/10.1557/JMR.2003.0271
  8. Li, C., Li, X., Xu, M., Zhang, H. (2020). Effect of ultrasonication on the flotation of fine graphite particles: nanobubbles or not?, Ultrasonics Sonochemistry, 69, 105243.
  9. Ludwig, M., Sniezek, E., Jastrzebska, I., Prorok, R., Sulkowski, M., Golawski, C., Fischer, C., Wojteczko, K., Szczerba, J. (2021). Recycled magnesia-carbon aggregate as the component of new type of MgO-C refractories, Construction and Building Materials, 272, 121912.
  10. Luza, A.L., Simao, L., Acordi, J., Raupp-Pereira, F., Innocentini, M.D.M., Montedo, O.R.K. (2022). Synthesis of chemically bonded porous ceramics from MgO-C refractory bricks waste, Ceramics International, 48(3), 3426-3434. https://doi.org/10.1016/j.ceramint.2021.10.119
  11. Sathiyakumar, M., Mahata, T., Hazra, S., Delabaere, C., Panda, P.B. (2015). Low carbon MgO-C refractories for clean steel making in steel ladles, Proceedings of METEC & 2nd ESTAD, Duesseldorf, Germany.
  12. Shchukin, D.G., Skorb, E., Belova, V., Mohwald, H. (2011). Ultrasonic cavitation at solid surfaces, Advanced Materials, 23(17), 1922-1934. https://doi.org/10.1002/adma.201004494
  13. Taffin, C., Poirier, J. (1994). The behaviour of metal additives in MgO-C and Al2O3-C refractories, Interceram, 43(5), 354-358.
  14. Tian, X., Liu, G., Shang, X., Li, H., Wang, X., Yang, W., Chen, Y. (2018). Effect of carbon-coated Al2O3 powder on structure and properties of low-carbon MgO-C refractory composites, Processing and Application of Ceramics, 12(3), 295-302. https://doi.org/10.2298/PAC1803295T
  15. Wakamatsu, T., Numata, Y. (1991). Flotation of graphite, Minerals Engineering, 4(7-11), 975-982. https://doi.org/10.1016/0892-6875(91)90078-A
  16. Zhu, T.B., Li, Y.W., Sang, S.B., Jin, S.L. (2016). The influence of Al and Si additives on the microstructure and mechanical properties of low-carbon MgO-C refractories, Journal of Ceramic Science and Technology, 7(1), 127-134.