DOI QR코드

DOI QR Code

Effects of biodegradable polymer coating urea to nitrogen release in the soil column

생분해성 코팅 요소 종류별 질소 용출 및 온실가스 발생량에 미치는 영향

  • Jaeyee Choi (Bio-technology of Multidisciplinary Sciences, Co., JBTP R&D Center) ;
  • JoungDu Shin (Bio-technology of Multidisciplinary Sciences, Co., JBTP R&D Center) ;
  • HyunJong Cho (Nousbo Co., Ltd.) ;
  • Woojin Chung (Department of Civil & Energy System Engineering, Kyonggi University) ;
  • Sang Beom Lee (National Institute of Crop Science) ;
  • Seok In Yun (Department of Bio-Environmental Chemistry, Wonkwang University)
  • 최재이 (전북테크노파크 전북과학기술센터 다학바이오택 ) ;
  • 신중두 (전북테크노파크 전북과학기술센터 다학바이오택) ;
  • 조현종 ((주)누보 중앙연구소 소) ;
  • 정우진 (경기대학교 사회에너지시스템공학과) ;
  • 이상범 (국립식량과학원 ) ;
  • 윤석인 (원광대학교 생물환경화학과 )
  • Received : 2024.03.13
  • Accepted : 2024.03.24
  • Published : 2024.03.30

Abstract

Biodegradable coating urea plays an important role in reducing the non-pollutants in agroecosystems, maximizing the plant nutrient utilization efficiency and slow-releasing nitrogen. Herein, the objective of this study was to investigate the nitrogen-releasing patterns and greenhouse gas emissions on different biodegradable coating urea. The treatments consisted of the control as an application of chemical fertilizers, NBCF as the non-biodegradable coating urea, NB60, and MDS as biodegradable coating urea. As a result of this study, the maximum accumulated total nitrogen (TN) concentration in the NBCF was higher at 33% than one in the NB60 during the precipitation periods. Its leaching period in the NCBF was prolonged for day 10 compared to the NB60. TN and NO3-N releasing patterns in the NBCF and NB60 were fitted well on linear types(R2≥0.991), but their control and MDS were fitted well on Sigmoid curves(R2≥0.994) with high releasing concentration in the MDS compared to the control during leaching periods. For the greenhouse gas emissions, CH4 emissions in the NBCF, NB60, and MDS were increased at 0.38%, 11.36%, and 5.91%, and N2O emissions were also increased at 50.5%, 32.4%, 58.8% as compared to the control, respectively. Therefore, application of biodegradable polymer coating urea might mitigate the non-point pollutants in agro-ecosystem.

생분해성 중합체 코팅 요소는 질소 용출을 제어하면서, 질소이용 효율을 극대화하며 농업생태계의 비점오염원을 줄여주는 역할을 한다. 따라서 본 연구의 목적은 생분해성 중합체 혼합물을 이용한 코팅 요소의 용출 패턴과 온실가스 배출량을 구명하는 것이었다. 처리내용은 속효성 비료인 요소를 대조구, 난분해성 코팅 요소(NBCF), 생분해 완효성 코팅 요소(NB60)와 생분해성 완효성 코팅 요소(MDS)를 토양에 혼합한 4가지 수준으로 구성하였다. 침출수에 대한 최대 총 질소 누적 농도는 NBCF가 NB60보다 33% 높았으며, NB60이 NBCF 보다 최대 용출 기간은 10일 지연되는 것으로 나타났다. 누적 총 질소 및 NO3-N의 용출 패턴에서 NB60과 NBCF는 일차 직선형태로 동일하였지만, 대조구와 MDS는 Sigmoid curves 형태로 누적 용출 농도는 MDS가 대조구보다 높게 나타났다. 생분해성 코팅 요소의 온실가스 발생량을 살펴보면, CH4의 발생량은 대조구 대비 NBCF, NB60, MDS 각각 0.38%, 11.36%, 5.91% 증가하였고, 또한 N2O의 발생량은 대조구 대비 각각 50.5%, 32.4%, 58.8% 증가하는 것으로 나타났다. 따라서 생분해 완효성 코팅 요소는 비료 이용성을 감안하여 포장에 시용할 경우 비료 시용량뿐만 아니라 농업생태계 비점 오염원을 줄일 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 국립농업과학원 연구과제(Project NO. PJ01711401)로 수행되었음을 감사하게 생각합니다.

References

  1. FAO, "FAOSTAT", http://www.fao.org/faostat/en/#data (accessed date: January 9, 2018) 
  2. Azeem, B., KuShaari, K., Man, Z. and Trinh, T.H., "Nutrient release characteristics and coating homogeneity of biopolymer coated urea as a function of fluidized bed process variables", Can. J. Chem. Eng., 95(5), pp. 849~862. (2017). 
  3. Mueller, N.D., Gerber, J.S., Johnston, M., Ray, D.K., Ramankutty, N. and Foley, J.A., "Closing yield gaps through nutrient and water management", Nature, 490, pp. 254~257. (2012). 
  4. Liu, X., Yang, Y., Gao, B., Li, Y. and Wan, Y., "Environmentally friendly slow-release urea fertilizers based on waste frying oil for sustained nutrient release", ACS Sustainable Chem. Eng., 5(7), pp. 6036~6045. (2017). 
  5. Azeem B., KuShaari K., Man Z. B., Basit A. and Thanh T. H., "Review on materials & methods to produce controlled release coated urea fertilizer", J. Control Release., 181, pp. 11~21. (2014). 
  6. Liu, J. Y., Kuang, W. H., Zhang, Z. X., Xu, X. L., Qin, Y. W. and Ning, J., "Spatiotempor al characteristics, patterns, and causes of land-use changes in China since the late 1980s", J. Geogr. Sci., 24, pp. 195~210. (2014). 
  7. Bortoletto-Santos, R., Ribeiro, C. and Polito, W. L. "Controlled release of nitrogen- source fertilizers by natural-oil-based poly(urethane) coatings: The kinetic aspects of urea release", J. Appl. Polym. Sci., 133(33), pp. 1~8. (2016). 
  8. Klaic, R., Plotegher, F., Ribeiro, C., Zangirolami, T.C. and Farinas, C.S., "A novel combined mechanical-biological approach to improve rock phosphate solubilization", Int. J. Miner. Process., 161, pp. 50~58, (2017). 
  9. Ye, F., Xiao, L., Liang, Y., Zhou, Y. and Zhao, G. "Spontaneous fermentation tunes the physicochemical properties of sweet potato starch by modifying the structure of starch molecules", Carbohydr. Polym., 213, pp. 79~88. (2019). 
  10. European Bioplastics, "Bioplastics market data". (2019). https://www.european-bioplastics.org/market/ 
  11. Wang, L., Ma, W., Gross, R.A. and McCarthy, S.P., "Reactive compatibilization of biodegradable blends of poly(lactic acid) and poly(ε-caprolactone)", Polym. Degrad. Stab., 59(1-3), pp. 161~168. (1998). 
  12. Bhatia, A., Gupta, R., Bhattacharya, S. and Choi, H., "Compatibility of biodegradable poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blends for packaging application", Korea-Aust. Rhelogy. J., 19(3), pp. 125~131. (2007). 
  13. Gigli, M., Fabbri, M., Lotti, N., Gamberini, R., Rimini, B. and Munari, A., "Poly (butylene succinate)-based polyesters for biomedical applications: A r eview", Eur . Polym. J., 75, pp. 431~460. (2016). 
  14. Zhao, P., Liu, W., Wu, Q. and Ren, J., "Preparation, mechanical, and thermal properties of biodegradable polyesters/poly(Lactic Acid) blends", J. Nanomater., 2010, pp. 1~8. (2010). 
  15. Yokohara, T. and Yamaguchi, M., "Structure and properties for biomass-based polyester blends of PLA and PBS", Eur. Polym. J., 44(4), pp. 677~685. (2008). 
  16. Supthanyakul, R., Kaabbuathong, N., and Chirachanchai, S., "Random poly(butylene succinate-co-lactic acid) as a multi-functional additive for miscibility, toughness, and clarity of PLA/PBS blends", Polymer., 105, pp. 1~9. (2016). 
  17. Chaiwutthinan, P., Pimpan, V., Chuayjuljit, S. and Leejarkpai, T., "Biodegradable plastics prepared from poly(lactic acid), poly(butylene succinate) and microcrystalline cellulose extracted from waste-cotton fabric with a chain extender", J. Polym. Environ., 23, pp. 114~125. (2015). 
  18. Nelson, T. F., Baumgartner, R., Jaggi, M., Bernasconi, S. M., Battagliarin, G., Sinkel, C., Kunkel, A., Kohler, H. P. E., McNeill, K. and Sander, M., "Biodegradation of poly (butylene succinate) in soil laboratory incubations assessed by stable carbon isotope labelling", Nature Communications. (2022). 
  19. Weise, B., Huysman, S., Manvi, P. and Theunissen, L. "PBS-based fibers for renewable textiles", Bioplatics Mag., 5, pp. 24~25. (2018). 
  20. Huang, J., Cui, C., Yana, G., Huang, H. and Zhang. M., "A study on degradation of composite material PBS/PCL", Polym. Compos., 24(2), pp. 143~148. (2016). 
  21. Trenkel, M.E., "Controlled release and stabilized fertilizers in agriculture", International Fertilizer Industry Association, Paris, France. (1997). 
  22. Park, J. H., Choi, H. K., Kim, J. K. and Kim, K. Y., "Effect of slow-release fertilizer on yield and quality of third-harvest tea leaves", Korean J. Soil Sci. Fer., 38(5), pp. 47~51. (2005). 
  23. Kim, Y. S., Kim, T. S., Ham, S. K., Bang, S. W. and Lee, C. E., "The effect of compound fertilizer contained slow release nitrogen on Turfgrass growth in Kentucky bluegrass and on nitrogen change in root zone", Weed & Turfgrass Science, 23(1), pp. 101~110. (2009). 
  24. Bremner, J. M., and Mulvaney, R. L., "Urease activiry in soils", In R. G. Burns (Ed.), Soil enzymes. Academic Press, Inc., New York, pp. 149~196. (1978). 
  25. Vlek, P.L.G., and Craswell, E.T., "Ammonia volatilization from flooded soil", Fertil. Res., 2, pp. 227~245. (1981). 
  26. Frency, J.R., Simpon, J.R. and Demeed, O.P., "Volatilization of ammonia", In J.R. Frency and J.R. Simpson (Eds.), Gaseous Loss of Nitrogen from Plant-Soil System. Martinus Nijhoff., pp. 1~32. (1983). 
  27. Joo, Y.K., Christians, N.E. and Bremner, J.M., "Effect of N-(nButyl) thiophostoric triamide(MBPT) on growth response and ammonia volatilization following fertilization of kentucky bluegrass(Poa pratensis L.) with urea", J. Fert. Issues, 4(3), pp. 98~102. (1987). 
  28. Alexander, A. and Helm, H.U.. "Urea form as a slow-release fertilizer: A review", Z. Pflanzenernaehr Bodenkd., 153(4), pp. 249~255. (1990). 
  29. Amberger, A., "Research on dicyandiamide as a nitrification inhibitor and future outlook", Commun. Soil Sci. Plant Anal., 20, pp. 1933~1956. (1989). 
  30. Givol, M., "Controlled release fertilizers interaction with plants and soil", M.Sc. Faculty Agric. Eng. Technion-IIT, Haifa, Israel. (1991). 
  31. RDA (Rural Development Administration). "Criteria for prescription of crops", National Institute of Agricultural Sciences. (2017). 
  32. Conrad, R., "Control of microbial methane production in wetland rice fields", Nutr. Cycl. Agroecos., 64(1), pp. 59~69. (2002).