DOI QR코드

DOI QR Code

Synthesis of LiDAR-Detective Black Material via Recycling of Silicon Sludge Generated from Semiconductor Manufacturing Process and Its LiDAR Application

반도체 제조공정에서 발생하는 실리콘 슬러지를 재활용한 라이다 인지형 검은색 소재의 제조 및 응용

  • Minki Sa (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Jiwon Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Shin Hyuk Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Chang-Min Yoon (Department of Chemical and Biological Engineering, Hanbat National University)
  • 사민기 (국립한밭대학교 화학생명공학과) ;
  • 김지원 (국립한밭대학교 화학생명공학과) ;
  • 김신혁 (국립한밭대학교 화학생명공학과) ;
  • 윤창민 (국립한밭대학교 화학생명공학과)
  • Received : 2024.03.10
  • Accepted : 2024.03.20
  • Published : 2024.03.30

Abstract

In this study, LiDAR-detective black material is synthesized by recycling silicon sludge (SS) that is generated from semiconductor manufacturing process, and its recognition is confirmed using two types of LiDAR sensors (MEMS and Rotating LiDAR). In detail, metal impurities on the surface of SS is removed, followed by coating of titanium dioxide (TiO2) and subsequent chemical reduction to obtain SS-derived black TiO2 (SS/bTiO2) material. As-prepared SS/bTiO2 is mixed with transparent paint to prepare hydrophilic black paints and applied to a glass substrate using a spray gun. SS/bTiO2-based paint shows similar blackness (L*=15.7) compared to commercial carbon black-based paint, and remarkable NIR reflectance (26.5R%, 905nm). Furthermore, MEMS and Rotating LiDAR have successfully detected the SS/bTiO2-based paint. This is attributed to the occurrence of high reflection of light at the interface between the black TiO2 and the silicon sludge according to the Fresnel's reflection principle. Hence, the new application field to effectively recycle silicon sludge generated in the semiconductor manufacturing process has been presented.

본 연구에서는 반도체 제조공정에서 발생한 실리콘 슬러지(SS)를 재활용하여 라이다 센서에 인식 가능한 검은색 소재(SS/bTiO2)로 제조하고, 두 종류의 라이다 센서(MEMS 및 Rotating LiDAR)를 활용하여 제조한 소재의 인식률을 확인하였다. 상세히는, SS 표면의 금속 불순물을 제거하여 이산화티타늄을 도입하고 화학적 환원을 통해 SS/bTiO2 소재를 제조하였다. SS/bTiO2는 투명 페인트와 혼합하여 친수성 검은색 도료로 제조하고 스프레이 건을 사용하여 유리 기판에 도포하였다. SS/bTiO2 기반의 도료는 상용화된 카본 블랙 기반의 도료와 유사한 명도(L*=15.7)를 가짐과 동시에 우수한 근적외선 반사율(26.5R%, 905nm)을 나타내었다. 더불어, MEMS 및 Rotating 라이다를 통해서도 성공적으로 인식이 되는 것을 확인하였다. 이는 프레넬 반사 원리에 의해 검은색 이산화티타늄과 실리콘 슬러지 간의 계면에서 높은 반사가 일어났기 때문이다. 본 연구를 통해, 반도체 제조공정에서 발생하는 실리콘 슬러지를 효과적으로 재활용할 수 있는 새로운 응용 방안에 대하여 제시하였다.

Keywords

Acknowledgement

본 성과물은 중소벤처기업부에서 지원하는 2024년도 산학연 Collabo R&D사업(RS-2023-00224896)의 연구수행으로 인한 결과물임을 밝힙니다.

References

  1. Kim, S., Yoon, C., Ham, S., Park, J., Kwon, O., Park, D., Choi, S., Kim, S., Ha, K. and Kim, W., "Chemical use in the semiconductor manufacturing industry", Int. J. Occup. Environ. Health, 24(3-4), pp. 109~118. (2018).
  2. Tsaramirsis, G., Kantaros, A., Al-Darraji, I., Piromalis, D., Apostolopoulos, C., Pavlopoulou, A., Airammal, M., Ismail, Z., Buhari, S. M., Stojmenovic, M., Tamimi, H., Randhawa, P., Patel, A. and Khan, F. Q., "A Modern Approach towards an Industry 4.0 Model: From Driving Technologies to Management", Hindawi, 2022, p. 5023011. (2022).
  3. Bai, C., Dallasega, P., Orzes, G. and Sarkis, J., "Industry 4.0 technologies assessment: A sustainability perspective", Int. J. Prod. Econ., 229, p. 107776. (2020).
  4. Yuan, C., Ie, I.-R., Chen, W.-C. and Yuan, C.-S., "Synthesis and physicochemical properties of β-silicon carbide prepared with reproduced carbon black and semiconductor packing waste by integrated mechanical and thermal activation (IMTA) process", J. Environ. Chem. Eng., 10(5), p. 108404. (2022).
  5. Jung, W.-G., Hossain, S. T., Johra, F. T., Kim, J.-H. and Chang, Y.-C., "Reduction of chromium ore by recycled silicon cutting sludge waste with carbon addition", J. Iron Steel Res. Int., 26, pp. 806~817. (2019).
  6. Lim, T., Bae, S. H., Yu, S. H., Baek, K .-Y. and Cho, S., "Near-infrared reflective dark-tone bilayer system for LiDAR-based autonomous vehicles", Macromol. Res., 30, pp. 342~347. (2022).
  7. Lee, H. J., Jung, K. Y. and Kim, Y.-S., "Nanostructured Fe2O3/TiO2 composite particles with enhanced NIR reflectance for application to LiDAR detectable cool pigments", RSC Adv., 11, pp. 16854~16840. (2021).
  8. Wu, S., Reddy, G. K. and Banerjee, D., "Pitch-black nanostructured copper oxide as an alternative to carbon black for autonomous environments", Advanced Intelligent Systems, 3(9), p. 2100049. (2021).
  9. Mun, H., Lee, K. H., Yoo, S. J., Kim, H.-S., Jeong, J., Oh, S. H., Snyder, G. J., Lee, Y. H., Kim, Y.-M. and Kim, S. W., "Highly fluidic liquid at homointerface generates grain-boundary dislocation arrays for high-performance bulk thermoelectrics", Acta Mater., 159, pp. 266~275. (2018).
  10. Ren, M., Yin, H., Ge, C., Huo, J., Li, X., Wang, A., Yu, L., Jiang, T. and Wu, Z., "Preparation and characterization of inorganic colored coating layers on lamellar mica-titania substrate", Appl. Surf. Sci., 258(7), pp. 2667~2673. (2012).
  11. Masuda, T., Hirai, S., Inoue, M., Chantana, J., Kudo, Y. and Minemoto, T., "Colorful, flexible, and lightweight Cu(In,Ga)Se2 solar cell by lift-off process with automotive painting", IEEE J. Photovolt, 8(5), pp. 1326~1330. (2018).
  12. Son, S., Hwang, S. H., Kim, C., Yun, J. Y. and Jang, J., "Designed synthesis of SiO2/TiO2 core/shell structure as light scattering material for highly efficient dye-sensitized solar cells", ACS Appl. Mater. Interfaces., 5, pp. 4815~4820. (2013).
  13. Jekal, S., Kim, J., Lu, Q., Kim, D.-H., Noh, J., Kim, H.-Y., Kim, M.-J., Kim, M.-S., Oh, W.-C., Choi, H.-J. and Yoon, C.-M., "Development of novel colorful electrorheological fluids", Nanomaterials, 12(18), p. 3113. (2022).
  14. Agata, M.-S., Maya, E.-K., Oliwia, P. and Ewa, K., "Are titania photocatalysts and titanium implants safe? Review on the toxicity of titanium compounds", Nanomaterials, 10(10), p. 2065. (2020).
  15. Wataru, S., Satoshi, N., Takaaki, S. and Yasushi, M., "Creation of high-refractive-index amorphous titanium oxide thin films from low-fractal-dimension polymeric precursors synthesized by a Sol-Gel technique with a hydrazine monohydrochloride catalyst", Langmuir, 28(33), pp. 12245~12255. (2012).
  16. Chu, Y.-R., Sa, M., Kim, J., Jekal, S., Kim, C.-G., Kim, H.-Y., Lee, S., Sim, H. S. and Yoon, C.-M., "Application of silicon sludge from semiconductor manufacturing process as pigments and paints through titanium dioxide coating", J. of KORRA, 31(3), pp. 35~41. (2023).
  17. Peifhambardoust, N. S. and Aydemir, U., "Blue TiO2 nanotube arrays as semimetallic materials with enhanced photoelectrochemical activity towards water splitting", Turk. J. Chem., 44(6), pp. 1642~1654. (2020).
  18. Hossain, S. T., Johra, F. T. and Jung, W.-G., "Fabrication of silicon carbide from recycled silicon wafer cutting sludge and its purification", Appl. Sci., 8(10), p. 1841. (2018).
  19. Mahalingam, T., Selvakumar, C., Ranjith Kumar, E. and Venkatachalam, T., "Structural, optical, morphological and thermal properties of TiO2-Al and TiO2-Al2O3 composite powders by ball milling", Phys. Lett. A, 381(21), pp. 1815~1819. (2017).
  20. Na, W. K., Lim, H. M., Huh, S. H., Park, S. E., Lee, Y.-S. and Lee, S. H., "Effect of the average particle size and the surface oxidation layer of silicon on the colloidal silica particle through direct oxidation", Mater. Sci. Eng. B., 163(2), pp. 82~87. (2009).
  21. Shao, G., Wu, X., Kong, Y., Cui, S., Shen, X., Jiao, C. and Jiao, J., "Thermal shock behavior and infrared radiation property of integrative insulations consisting of MoSi2/borosilicate glass coating and fibrous ZrO2 ceramic substrate", Surf. Coat. Technol., 270, pp. 154~163. (2015).
  22. Soares, L. and Alves A., "Analysis of colorimetry using the CIE-L*a*b* system and the photocatalytic activity of photochromic films", Mater. Res. Bull., 105, pp. 318~321. (2018).
  23. Bae, C. H. and Jung, K. Y., "Optimization of NIR reflectance of (Zn,Co)AlFeO4 black pigment for LiDAR detection in autonomous vehicles", Ceram. Int., 50(6), pp. 9177~9184. (2024).
  24. Jekal, S., Kim, J., Kim, D.-H., Noh, J., Kim, M.-J., Kim, H.-Y., Kim, M.-S., Oh, W.-C. and Yoon, C.-M., "Synthesis of LiDAR-detectable true black core/shell nanomaterial and its practical use in LiDAR applications", Nanomaterials, 12(2), p. 3689. (2022).
  25. Phillips, K. R., Shirman, T., Aizenberg, M., England, G. T., Vogel, N. and Aizenberg, J., "Silica-titania hybrids for structurally robust inverse opals with controllable refractive index", J. Mater. Chem. C., 8(1), pp. 109~116. (2019).