DOI QR코드

DOI QR Code

Viral Metatranscriptomic Analysis to Reveal the Diversity of Viruses Infecting Satsuma Mandarin (Citrus unshiu) in Korea

  • Hae-Jun Kim (Department of Applied Biology, Chonnam National University) ;
  • Se-Ryung Choi (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • In-Sook Cho (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Rae-Dong Jeong (Department of Applied Biology, Chonnam National University)
  • Received : 2024.01.15
  • Accepted : 2024.01.31
  • Published : 2024.04.01

Abstract

Citrus cultivation plays a pivotal role, making a significant contribution to global fruit production and dietary consumption. Accurate identification of viral pathogens is imperative for the effective management of plant viral disease in citrus crops. High-throughput sequencing serves as an alternative approach, enabling comprehensive pathogen identification on a large scale without requiring pre-existing information. In this study, we employed HTS to investigate viral pathogens infecting citrus in three different regions of South Korea: Jejudo (Jeju), Wando-gun (Wando), and Dangjin-si (Dangjin). The results unveiled diverse viruses and viroids that exhibited regional variations. Notably, alongside the identification of well-known citrus viruses such as satsuma dwarf virus, citrus tatter leaf virus, and citrus leaf blotch virus (CLBV), this study also uncovered several viruses and viroids previously unreported in Korean citrus. Phylogenetic analysis revealed that majority of identified viruses exhibited the closest affilations with isolates from China or Japan. However, CLBV and citrus viroid-I-LSS displayed diverse phylogenetic positions, reflecting their regional origins. This study advances our understanding of citrus virome diversity and regional dynamics through HTS, emphasizing its potential in unraveling intricate viral pathogens in agriculture. Consequently, it significantly contributes to disease management strategies, ensuring the resilience of the citrus industry.

Keywords

Acknowledgement

This work was carried out with the support of Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ014947032023) Rural Development Administration, Republic of Korea.

References

  1. Acosta, M., Quinones, A., Munera, S., de Paz, J. M. and Blasco, J. 2023. Rapid prediction of nutrient concentration in citrus leaves using Vis-NIR spectroscopy. Sensors 23:6530.
  2. Astruc, N., Marcos, J. F., Macquaire, G., Candresse, T. and Pallas, V. 1996. Studies on the diagnosis of hop stunt viroid in fruit trees: identification of new hosts and application of a nucleic acid extraction procedure based on non-organic solvents. Eur. J. Plant Pathol. 102:837-846. https://doi.org/10.1007/BF01877053
  3. Belabess, Z., Radouane, N., Sagouti, T., Tahiri, A. and Lahlali, R. 2021. A current overview of two viroids prevailing in citrus orchards: citrus exocortis viroid and hop stunt viroid. In: Citrus: research, development and biotechnology, eds. by M. S. Khan and I. A. Khan. IntechOpen, London, UK.
  4. Bernad, L. and Duran-Vila, N. 2006. A novel RT-PCR approach for detection and characterization of citrus viroids. Mol. Cell. Probes 20:105-113. https://doi.org/10.1016/j.mcp.2005.11.001
  5. Bester, R., Cook, G., Breytenbach, J. H. J., Steyn, C., De Bruyn, R. and Maree, H. J. 2021. Towards the validation of high-throughput sequencing (HTS) for routine plant virus diagnostics: measurement of variation linked to HTS detection of citrus viruses and viroids. Virol. J. 18:61. https://doi.org/10.1186/s12985-021-01523-1
  6. Boers, S. A., Jansen, R. and Hays, J. P. 2019. Understanding and overcoming the pitfalls and biases of next-generation sequencing (NGS) methods for use in the routine clinical microbiological diagnostic laboratory. Eur. J. Clin. Microbiol. Infect. Dis. 38:1059-1070. https://doi.org/10.1007/s10096-019-03520-3
  7. Cao, M., Wu, Q., Yang, F., Wang, X., Li, R., Zhou, C. and Li, Z. 2017. Molecular characterization and phylogenetic analysis of citrus viroid VI variants from citrus in China. Eur. J. Plant Pathol. 149:885-893. https://doi.org/10.1007/s10658-017-1236-3
  8. Domingo, E. and Holland, J. J. 1997. RNA virus mutations and fitness for survival. Annu. Rev. Microbiol. 51:151-178. https://doi.org/10.1146/annurev.micro.51.1.151
  9. Flores, R., Gas, M.-E., Molina-Serrano, D., Nohales, M.-A., Carbonell, A., Gago, S., De la Pena, M. and Daros, J.-A. 2009. Viroid replication: rolling-circles, enzymes and ribozymes. Viruses 1:317-334. https://doi.org/10.3390/v1020317
  10. Folimonova, S. Y., Achor, D. and Bar-Joseph, M. 2020. Walking together: cross-protection, genome conservation, and the replication machinery of citrus tristeza virus. Viruses 12:1353.
  11. Food and Agriculture Organization of the United Nations (FAO). 2020. Crops and livestock products. URL http://www.fao.org/faostat/en/#data/QC [13 September 2023].
  12. Gago, S., Elena, S. F., Flores, R. and Sanjuan, R. 2009. Extremely high mutation rate of a hammerhead viroid. Science 323:1308.
  13. Garnsey, S. M., Civerolo, E. L., Gumpf, D. J., Paul, C., Hilf, M. E., Lee, R. F., Brlansky, R. H., Yokomi, R. K. and Hartung, J. S. 2005. Biological characterization of an international collection of citrus tristeza virus (CTV) isolates. In: International Organization of Citrus Virologists Conference Proceedings (1957-2010), eds. by M. E. Hilf, N. Duran-Villa and M. A. Rocha-Pena, pp. 75-93. International Organization of Citrus Virologists, Riverside, CA, USA.
  14. Hyun, J. W., Hwang, R. Y., Choi, C. W., Jung, K. E. and Han, S. G. 2020. Symptomatology of citrus mosaic sadwavirus (CiMV) in some citrus cultivars and effect of CiMV infection on citrus fruit quality. Plant Pathol. J. 36:106-110. https://doi.org/10.5423/PPJ.NT.07.2019.0192
  15. Hyun, J. W., Hwang, R. Y. and Jung, K. E. 2017. Development of multiplex PCR for simultaneous detection of citrus viruses and the incidence of citrus viral diseases in late-maturity citrus trees in Jeju Island. Plant Pathol. J. 33:307-317. https://doi.org/10.5423/PPJ.OA.10.2016.0207
  16. Jo, Y., Lian, S., Chu, H., Cho, J. K., Yoo, S.-H., Choi, H., Yoon, J.-Y., Choi, S.-K., Lee, B. C. and Cho, W. K. 2018. Peach RNA viromes in six different peach cultivars. Sci. Rep. 8:1844.
  17. Kleynhans, J. and Pietersen, G. 2016. Comparison of multiple viral population characterization methods on a candidate cross-protection citrus tristeza virus (CTV) source. J. Virol. Methods 237:92-100. https://doi.org/10.1016/j.jviromet.2016.09.003
  18. Kokane, S., Misra, P., Kokane, A. D., Gubyad, M. G., Warghane, A. J., Surwase, D., Reddy, M. K. and Ghosh, D. K. 2021. Development of a real-time RT-PCR method for the detection of citrus tristeza virus (CTV) and its implication in studying virus distribution in planta. 3 Biotech 11:431.
  19. Kwak, M. and Kil, E.-J. 2022. First report of citrus leaf blotch virus 2 in mandarin (Citrus reticulata) in Jeju Island, Korea. Plant Dis. 107:1639.
  20. Lubbe, J. W. 2015. Molecular and biological characterization of three citrus tristeza virus candidate cross-protection sources. Ph.D. thesis. University of Pretoria, Pretoria, South Africa.
  21. Osman, F., Hodzic, E., Kwon, S.-J., Wang, J. and Vidalakis, G. 2015. Development and validation of a multiplex reverse transcription quantitative PCR (RT-qPCR) assay for the rapid detection of citrus tristeza virus, citrus psorosis virus, and citrus leaf blotch virus. J. Virol. Methods 220:64-75. https://doi.org/10.1016/j.jviromet.2015.04.013
  22. Park, C. Y., Park, J., Kim, H., Yi, S.-I. and Moon, J. S. 2019. First report of citrus leaf blotch virus in Satsuma mandarin in Korea. J. Plant Pathol. 101:1229.
  23. Roistacher, C. N. and Moreno, P. 1991. The worldwide threat from destructive isolates of citrus tristeza virus: a review. In: International Organization of Citrus Virologists Conference Proceedings (1957-2010), pp. 7-19. International Organization of Citrus Virologists, Riverside, CA, USA.
  24. Villamor, D. E. V., Ho, T., Al Rwahnih, M., Martin, R. R. and Tzanetakis, I. E. 2019. High throughout sequencing for plant virus detection and discovery. Phytopathology 109:716-725. https://doi.org/10.1094/PHYTO-07-18-0257-RVW
  25. Yang, H.-J., Oh, J., Lee, H.-K., Lee, D.-S., Kim, S.-Y., Kim, M.-H., Park, C.-Y., Kim, H., Lee, S.-I., Jeong, R.-D., Moon, J.-S. and Lee, S.-H. 2019. First report of citrus vein enation virus in Satsuma mandarin (Citrus unshiu) in Korea. Plant Dis. 103:2703. https://doi.org/10.1094/PDIS-03-19-0468-PDN
  26. Yokomi, R. 2019. CTV vectors and interactions with the virus and host plants. Methods Mol. Biol. 2015:29-53. https://doi.org/10.1007/978-1-4939-9558-5_4
  27. Zhao, Y., Li, M.-C., Konate, M. M., Chen, L., Das, B., Karlovich, C., Williams, P. M., Evrard, Y. A., Doroshow, J. H. and McShane, L. M. 2021. TPM, FPKM, or normalized counts? A comparative study of quantification measures for the analysis of RNA-seq data from the NCI patient-derived models repository. J. Transl. Med. 19:269.
  28. Zibaee, E., Kamalian, S., Tajvar, M., Amiri, M. S., Ramezani, M., Moghadam, A. T., Emami, S. A. and Sahebkar, A. 2020. Citrus species: a review of traditional uses, phytochemistry and pharmacology. Curr. Pharm. Des. 26:44-97. https://doi.org/10.2174/1381612825666191127115601