DOI QR코드

DOI QR Code

Development of a Selective Medium for Surveillance of Fusarium Head Blight Disease

  • Hosung Jeon (Department of Agricultural Biotechnology, Seoul National University) ;
  • Jung Wook Yang (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Donghwan Shin (Department of Agricultural Biotechnology, Seoul National University) ;
  • Donggyu Min (Department of Agricultural Biotechnology, Seoul National University) ;
  • Byung Joo Kim (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Kyunghun Min (Department of Agricultural Biotechnology, Seoul National University) ;
  • Hokyoung Son (Department of Agricultural Biotechnology, Seoul National University)
  • Received : 2023.12.17
  • Accepted : 2024.01.24
  • Published : 2024.04.01

Abstract

Fusarium head blight (FHB), predominantly caused by Fusarium graminearum and F. asiaticum, is a significant fungal disease impacting small-grain cereals. The absence of highly resistant cultivars underscores the need for vigilant FHB surveillance to mitigate its detrimental effects. In 2023, a notable FHB outbreak occurred in the southern region of Korea. We assessed FHB disease severity by quantifying infected spikelets and grains. Isolating fungal pathogens from infected samples often encounters interference from various microorganisms. We developed a cost-effective, selective medium, named BGT (Burkholderia glumae Toxoflavin) medium, utilizing B. glumae, which is primarily known for causing bacterial panicle blight in rice. This medium exhibited selective growth properties, predominantly supporting Fusarium spp., while substantially inhibiting the growth of other fungi. Using the BGT medium, we isolated F. graminearum and F. asiaticum from infected wheat and barley samples across Korea. To further streamline the process, we used a direct PCR approach to amplify the translation elongation factor 1-α (TEF-1α) region without a separate genomic DNA extraction step. Phylogenetic analysis of the TEF-1α region revealed that the majority of the isolates were identified as F. asiaticum. Our results demonstrate that BGT medium is an effective tool for FHB diagnosis and Fusarium strain isolation.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (2022R1I1A1A01065138 and 2021R1C1C1004200) and the project PJ015741022024 of National Institute of Crop Science, Rural Development Administration, Republic of Korea. We thank Eunhye Goo for providing the B. glumae BGR1 strain.

References

  1. Ahn, S., Kim, M., Lim, J. Y., Choi, G. J. and Seo, J.-A. 2022. Characterization of Fusarium asiaticum and F. graminearum isolates from gramineous weeds in the proximity of rice fields in Korea. Plant Pathol. 71:1164-1173.
  2. Ashiq, S., Back, M., Watson, A. and Edwards, S. G. 2023. Screening of fungicides and comparison of selective media for isolation of Fusarium graminearum from soil and plant material. Pathogens 12:197.
  3. Choi, S., Yang, J. W., Kim, J.-E., Jeon, H., Shin, S., Wui, D., Kim, L. S., Kim, B. J., Son, H. and Min, K. 2023. Infectivity and stress tolerance traits affect community assembly of plant pathogenic fungi. Front. Microbiol. 14:1234724.
  4. Culp, S. J., Mellick, P. W., Trotter, R. W., Greenlees, K. J., Kodell, R. L. and Beland, F. A. 2006. Carcinogenicity of malachite green chloride and leucomalachite green in B6C3F1 mice and F344 rats. Food Chem. Toxicol. 44:1204-1212. https://doi.org/10.1016/j.fct.2006.01.016
  5. Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J. and Foster, G. D. 2012. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13:414-430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
  6. Edler, D., Klein, J., Antonelli, A. and Silvestro, D. 2021. raxmlGUI 2.0: a graphical interface and toolkit for phylogenetic analyses using RAxML. Methods Ecol. Evol. 12:373-377.
  7. Goswami, R. S. and Kistler, H. C. 2004. Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Pathol. 5:515-525. https://doi.org/10.1111/j.1364-3703.2004.00252.x
  8. Jeon, H., Kim, J.-E., Yang, J.-W., Son, H. and Min, K. 2023a. Application of direct PCR for phylogenetic analysis of Fusarium fujikuroi species complex isolated from rice seeds. Front. Plant Sci. 13:1093688.
  9. Jeon, H., Son, H. and Min, K. 2023b. Detailed protocol to perform direct PCR using filamentous fungal biomass-tips and considerations. Bio-protoc. 13:e4889.
  10. Jeong, Y., Kim, J., Kim, S., Kang, Y., Nagamatsu, T. and Hwang, I. 2003. Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Dis. 87:890-895. https://doi.org/10.1094/PDIS.2003.87.8.890
  11. Jung, B., Lee, S., Ha, J., Park, J.-C., Han, S.-S., Hwang, I., Lee, Y.-W. and Lee, J. 2013. Development of a selective medium for the fungal pathogen Fusarium graminearum using toxoflavin produced by the bacterial pathogen Burkholderia glumae. Plant Pathol. J. 29:446-450. https://doi.org/10.5423/PPJ.NT.07.2013.0068
  12. Jung, B., Park, J., Kim, N., Li, T., Kim, S., Bartley, L. E., Kim, J., Kim, I., Kang, Y., Yun, K., Choi, Y., Lee, H.-H., Ji, S., Lee, K. S., Kim, B. Y., Shon, J. C., Kim, W. C., Liu, K.-H., Yoon, D., Kim, S., Seo, Y.-S. and Lee, J. 2018. Cooperative interactions between seed-borne bacterial and air-borne fungal pathogens on rice. Nat. Commun. 9:31.
  13. Komada, H. 1975. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Rev. Plant Prot. Res. 8:114-124.
  14. Lee, J., Chang, I.-Y., Kim, H., Yun, S.-H., Leslie, J. F. and Lee, Y.-W. 2009. Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Appl. Environ. Microbiol. 75:3289-3295. https://doi.org/10.1128/AEM.02287-08
  15. Leslie, J. F. and Summerell, B. A. 2006. The Fusarium laboratory manual. Blackwell Publishing, Ames, IW, USA. 388 pp.
  16. Nagamatsu, T. 2002. Syntheses, transformation, and biological activities of 7-azapteridine antibiotics: toxoflavin, fervenulin, reumycin and their analogues. ChemInform 33:261.
  17. Nash, S. M. and Snyder, W. C. 1962. Quantitative estimations by plate counts of propagules of the bean root rot Fusarium in field soils. Phytopathology 52:567-572.
  18. O'Donnell, K., Kistler, H. C., Cigelnik, E. and Ploetz, R. C. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. U. S. A. 95:2044-2049. https://doi.org/10.1073/pnas.95.5.2044
  19. O'Donnell, K., Kistler, H. C., Tacke, B. K. and Casper, H. H. 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl. Acad. Sci. U. S. A. 97:7905-7910. https://doi.org/10.1073/pnas.130193297
  20. O'Donnell, K., Ward, T. J., Geiser, D. M., Corby Kistler, H. and Aoki, T. 2004. Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet. Biol. 41:600-623. https://doi.org/10.1016/j.fgb.2004.03.003
  21. Papavizas, G. C. 1967. Evaluation of various media and antimicrobial agents for isolation of Fusarium from soil. Phytopathology 57:848-852.
  22. Pestka, J. J. and Smolinski, A. T. 2005. Deoxynivalenol: toxicology and potential effects on humans. J. Toxicol. Environ. Health B Crit. Rev. 8:39-69. https://doi.org/10.1080/10937400590889458
  23. Rural Development Administration. 2012. Research criteria for agricultural science and technology research criteria. Rural Development Administration, Suwon, Korea. pp. 339-365.
  24. Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W., Fungal Barcoding Consortium and Fungal Barcoding Consortium Author List. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. U. S. A. 109:6241-6246. https://doi.org/10.1073/pnas.1117018109
  25. Shahjahan, A., Rush, M., Groth, D. and Clark, C. 2000. Panicle blight. Rice J. 15:26-29.
  26. U.S. Environmental Protection Agency. 2018. Chemicals evaluated for carcinogenic potential annual cancer report 2018. U.S. Environmental Protection Agency Office of Pesticide Programs. U.S. Environmental Protection Agency, Washington, DC, USA. 40 pp.
  27. Vujanovic, V., Hamel, C., Jabaji-Hare, S. and St-Arnaud, M. 2002. Development of a selective myclobutanil agar (MBA) medium for the isolation of Fusarium species from asparagus fields. Can. J. Microbiol. 48:841-847. https://doi.org/10.1139/w02-082
  28. Xu, X. and Nicholson, P. 2009. Community ecology of fungal pathogens causing wheat head blight. Annu. Rev. Phytopathol. 47:83-103. https://doi.org/10.1146/annurev-phyto-080508-081737
  29. Zhang, X., Halder, J., White, R. P., Hughes, D. J., Ye, Z., Wang, C., Xu, R., Gan, B. and Fitt, B. D. L. 2014. Climate change increases risk of Fusarium wheat ear blight on wheat in central China. Ann. Appl. Biol. 164:384-395. https://doi.org/10.1111/aab.12107