DOI QR코드

DOI QR Code

시나리오 중립 접근법을 활용한 기후변화 시나리오에 따른 보령시 가뭄의 수문학적 위험도 평가

Evaluation of hydrologic risk of drought in Boryeong according to climate change scenarios using scenario-neutral approach

  • 김지영 (한양대학교 대학원 스마트시티공학과) ;
  • 한영만 (한양대학교 대학원 건설환경시스템공학과) ;
  • 서승범 (서울시립대학교 국제도시과학대학원) ;
  • 김대하 (전북대학교 토목환경자원에너지공학부) ;
  • 김태웅 (한양대학교(ERICA) 건설환경공학과)
  • Kim, Jiyoung (Department of Smart City Engineering, Hanyang University) ;
  • Han, Young Man (Department of Smart City Engineering, Hanyang University) ;
  • Seo, Seung Beom (International School of Urban Sciences, University of Seoul) ;
  • Kim, Daeha (Department of Civil Engineering, Jeonbuk National University) ;
  • Kim, Tae-Woong (Department of Civil and Environmental Engineering, Hanyang University)
  • 투고 : 2024.01.02
  • 심사 : 2024.03.07
  • 발행 : 2024.03.31

초록

기후위기에 선제적으로 대비하기 위해서는 기후변화에 따른 영향을 예측 및 분석하고, 이를 바탕으로 기후위기 적응과 관련한 정책과 전략을 수립할 필요가 있다. 이를 위해 기후변화를 고려해야 하나, 기존 연구 방법인 시나리오 리드 접근법에서 연구자들은 기후변화 대표 시나리오를 선택하여 활용하기 때문에, 예측된 결과의 불확실성이 크고 신뢰도가 낮다. 이러한 연구 결과는 기후변화 관련된 수자원 정책 및 설계기준에 반영되는 데 한계가 있다. 따라서 기후변화로 인해 발생가능한 변화 범위를 고려하는 시나리오 중립 접근법을 활용할 필요가 있다. 본 연구에서는 보령시를 대상으로 총 343개의 기후스트레스 시계열을 생성한 뒤 이변량 가뭄빈도분석을 통해 재현기간을 산정하고 가뭄에 대한 수문학적 위험도를 산정하였다. 분석결과, SSP1-2.6 18개 및 SSP5-8.5에 18개에 대해 최대 재현기간의 가뭄이 20년 내에 발생할 수문학적 위험도는 0.15±0.025, 50년 내에 발생할 수문학적 위험도는 0.3125±0.0625 사이로 나타났다. 따라서 보령시에서는 해당 범위의 수문학적 위험도를 고려하여 가뭄 정책 및 대책 수립이 필요하다.

To prepare for the impending climate crisis, it is necessary to establish policies and strategies based on scientific predictions and analyses of climate change impacts. For this, climate change should be considered, however, in conventional scenario-led approach, researchers select and utilize representative climate change scenarios. Using the representative climate change scenarios makes prediction results high uncertain and low reliable, which leads to have limitations in applying them to relevant policies and design standards. Therefore, it is necessary to utilize scenario-neutral approach considering possible change ranges due to climate change. In this study, hydrologic risk was estimated for Boryeong after generating 343 time series of climate stress and calculating drought return period from bivariate drought frequency analysis. Considering 18 scenarios of SSP1-2.6 and 18 scenarios of SSP5-8.5, the results indicated that the hydrologic risks of drought occurrence with maximum return period ranged 0.15±0.025 within 20 years and 0.3125±0.0625 within 50 years, respectively. Therefore, it is necessary to establish drought policies and countermeasures in consideration of the corresponding hydrologic risks in Boryeong.

키워드

과제정보

본 결과물은 환경부의 재원으로 한국환경산업기술원의 가뭄대응 물관리 혁신기술개발사업의 지원을 받아 연구되었습니다(RS-2022-KE002032).

참고문헌

  1. Alodah, A., and Seidou, O. (2019). "Assessment of climate change impacts on extreme high and low flows: An improved bottom-up approach." Water, Vol. 11, No. 6, 1236. https://doi.org/10.3390/w11061236
  2. An, J.S. (2020). "Efforts to overcome permanent drought in agriculture", Water for Future, Vol. 53, pp. 80-84. (in Korean)
  3. Apipattanavis, S., Podesta, G., Rajagopalan, B., and Katz, R.W. (2007). "A semiparametric multivariate and multisite weather generator." Water Resources Research, Vol. 43, No. 11, w11401. 
  4. Board of Audit and Inspection (BAI) (2023). Audit report - Climate crisis adaptation and response status I (water and food sector).
  5. Bouchet, R. (1963). "Evapotranspiration reelle at potentielle, signification climatique." International Association of Hydrological Sciences, Vol. 62, pp. 134-142.
  6. Broderick, C., Murphy, C., Wilby, R.L., Matthews, T., Prudhomme, C., and Adamson, M. (2019). "Using a scenario neutral framework to avoid potential maladaptation to future flood risk." Water Resources Research, Vol. 55, No. 2, pp. 1079-1104. https://doi.org/10.1029/2018WR023623
  7. Brown, C., Ghile, Y., Laverty, M., and Li, K. (2012). "Decision scaling: Linking bottom-up vulnerability analysis with climate projections in the water sector." Water Resources Research, Vol. 48, No. 9, W09537.
  8. Guo, D., Westra, S., and Maier, H.R. (2017). "Use of a scenarioneutral approach to identify the key hydrometeorological attributes that impact runoff from a natural catchment." Journal of Hydrology, Vol. 554, pp. 317-330. https://doi.org/10.1016/j.jhydrol.2017.09.021
  9. Intergovernmental Panel on Climate Change (IPCC). (2018). Summary for policymakers. In: Global warming of 1.5℃. an IPCC special report on the impacts of global warming of 1.5℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Cambridge University Press, Cambridge, UK and New York, NY, U.S., pp. 3-24.
  10. Jung, J., Park, D.H., and Ann, J. (2020). "Drought evaluation using unstructured data: A case study for Boryeong area." Journal of Korea Water Resources Association, Vol. 53, No. 12, pp. 1203-1210. (in Korean)
  11. Jung, W.H., Noh, S.H., and Kim, Y,I. (2016). A study on the water supply capacity evaluation and drought response plan of Boryeong Dam. ChungNam Institute. (in Korean)
  12. Kim, D., Kim, E., Lee, S.C., Kim, E., and Shin, J. (2022). "A decision-centric impact assessment of operational performance of the Yongdam Dam, South Korea." Journal of Korea Water Resources Association, Vol. 55, No. 3, pp. 205-215. (in Korean)
  13. Kim, D., Lee, W.S., Kim, S.T., and Chun, J.A. (2019). "Historical drought asessment over the contiguous united states using the generalized complementary principle of evapotranspiration." Water Resources Research, Vol. 55, No. 7, pp. 6244-6267. https://doi.org/10.1029/2019WR024991
  14. Kim, H., Kim, J.E., Kim, J., Yoo, J., and Kim, T.W. (2023a). "Evaluation of future hydrologic risk of drought in Nakdong River basin using Bayesian classification-based composite drought index." KSCE Journal of Civil and Environmental Engineering Research, Vol. 43, No. 3, pp. 309-319. (in Korean)
  15. Kim, J., Seo, S.B., and Cho, J. (2023b). "Development of a decision scaling framework for drought vulnerability assessment of dam operation under climate change." Journal of Korea Water Resources Association, Vol. 56, No. 4, pp. 273-284. (in Korean)
  16. Kim, J.E., Yu, J.S., Lee, J.H., and Kim, T.W. (2018). "Drought risk analysis in Seoul using Cheugugi and climate change scenario based rainfall data." KSCE Journal of Civil and Environmental Engineering Research, Vol. 38, No. 3, pp. 387-393. (in Korean)
  17. Korea Meteorological Administration (KMA) (2023a). Republic of Korea, accessed 6 November 2023, <https://hydro.kma.go.kr/front/intro.do>.
  18. Korea Meteorological Administration (KMA) (2023b). Open MET Data Portal, accessed 6 November 2023, <https://data.kma.go.kr/cmmn/main.do>.
  19. Kwon, H.H., Lall, U., and Khalil, A.F. (2007). "Stochastic simulation model for nonstationary time series using an autoregressive wavelet decomposition: Applications to rainfall and temperature." Water Resources Research, Vol. 43, No. 5, W05407.
  20. Kwon, Y.M., and Kim, T.W. (2009). "Derived I-D-F curve in Seoul using Bivariate precipitation frequency analysis." KSCE Journal of Civil and Environmental Engineering Research, Vol. 29, No. 2B, pp. 155-162. (in Korean)
  21. Lee, J.H., Park, S.Y., Kim, M.G., and Chung, I.M. (2021). "Hydrological drought analysis and monitoring using multiple drought indices: The case of Mulrocheon watershed." KSCE Journal of Civil and Environmental Engineering Research, Vol. 41, No. 5, pp. 477-484. (in Korean)
  22. Lee, S.S. (2016). Drought analysis by climate change scenario in Chungcheongnam-do. ChungNam Institute. (in Korean)
  23. National Institute of Meteorological Sciences (NIMS). (2020). Global climate change outlook report, climate change forecast based on 4 future scenarios. National Institute of Meteorological Sciences. (in Korean)
  24. Park, J.Y., Kim, J.E., Lee, J.H., and Kim, T.W. (2019). "Assessment of hydrologic risk of extreme drought according to RCP climate change scenarios using bivariate frequency analysis." KSCE Journal of Civil and Environmental Engineering Research, Vol. 39, No. 5, pp. 561-568. (in Korean)
  25. Prudhomme, C., Wilby, R.L., Crooks, S., Kay, A.L., and Reynard, N.S. (2010). "Scenario-neutral approach to climate change impact studies: Application to flood risk." Journal of Hydrology, Vol. 390, pp. 198-209. https://doi.org/10.1016/j.jhydrol.2010.06.043
  26. Shiau, J.T. (2003). "Return period of bivariate distributed extreme hydrological events." Stochastic Environmental Research and Risk Assessment, Vol. 17, pp.42-57. https://doi.org/10.1007/s00477-003-0125-9
  27. Steinschneider, S., and Brown, C. (2013). "A semiparametric multivariate, multisite weather generator with low-frequency variability for use in climate risk assessments." Water Resources Research, Vol. 49, No. 11, pp. 7205-7220. https://doi.org/10.1002/wrcr.20528
  28. Szilagyi, J. (2014). "Temperature corrections in the Priestley - Taylor equation of evaporation." Journal of Hydrology, Vol. 519, pp. 455-464. https://doi.org/10.1016/j.jhydrol.2014.07.040
  29. Vicente-Serrano, S.M., Begueria, S., and Lopez-Moreno, J.I. (2010). "A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index." Journal of Climate, Vol. 23, No. 7, pp. 1696-1718. https://doi.org/10.1175/2009JCLI2909.1
  30. Wahla, S.S., Kazmi, J.H., Sharifi, A., Shirazi, S.A., Tariq, A., and Joyell Smith, H. (2022). "Assessing spatio-temporal mapping and monitoring of climatic variability using SPEI and RF machine learning models." Geocarto International, Vol. 37, No. 27, pp. 14963-14982. https://doi.org/10.1080/10106049.2022.2093411
  31. Yevjevich, V. (1967). An objective approach to definitions and investigations of continental hydrologic droughts. Hydrology Papers, Colorado State University, Fort Collins, CO, U.S., pp. 4-18.
  32. Yu, J.S., Shin, J.Y., Kwon, M. and Kim, T.W. (2017). "Bivariate drought frequency analysis to evaluate water supply capacity of multi-purpose dams." KSCE Journal of Civil and Environmental Engineering Research, Vol. 37, No. 1, pp. 231-238. (in Korean)