Acknowledgement
This work was supported by General Programs of the National Natural Science Foundation of China (Grant nos. 51774184), Excellent Research Team Fund in North China University of Technology (Grant no. 107051360019XN134/017), and Scientific Research Fund in North China University of Technology (Grant no. 110051360002). This study is supported via funding from Prince Satam bin Abdulaziz University project number (PSAU/2024/R/1445).
References
- Andreas. Z. (1994), "Simulation neuronaler netze-simulation of neural networks", Addison-Wesley, 1(5.3),
- Ahangari, N., Pusatli, T., Chengyong, J., Chen, J., Cemiloglu, A., Azarafza, M. and Derakhshani, R. (2022), "Application of ML techniques for the estimation of the safety factor in slope stability analysis", Water, 18(22), 3743. https://doi.org/10.3390/w14223743.
- Bai, G., Hou, Y., Wan, B., An, N., Yan, Y., Tang, Z., Yan, M., Zhang, Y. and Sun, D. (2022), "Performance evaluation and engineering verification of ML based prediction models for slope stability", Appl. Sci., 12(15), 7890. https://doi.org/10.3390/app12157890.
- Bishop, A.W. and Morgenstern, N. (1960), "Stability coefficients for earth slopes", Geotechnique, 10(4), 129-153. https://doi.org/10.1680/geot.1960.10.4.129.
- Chakraborty, A. and Goswami, D. (2017), "Prediction of slope stability using multiple linear regression (MLR) and artificial neural network (ANN)", Arab. J. Geosci., 385. https://doi.org/10.1007/s12517-017-3167-x.
- Das, S.K., Biswal, R.K., Sivakugan, N. and Das, B. (2011). "Classification of slopes and prediction of factor of safety using differential evolution neural networks", Environ. Earth. Sci., 64(1), 201-210. https://doi.org/10.1007/S12665-010-0839-1.
- Eberhardt, E. (2003), "Rock slope stability analysis-utilization of advanced numerical techniques", Earth and Ocean sci. at UBC., 41.
- Ferreira, C. (2001), "Gene expression programming: A new adaptive algorithm for solving problems", Comp. Sys., 13(2), 87-129. https://doi.org/10.48550/arXiv.cs/0102027.
- Guo, J.R., He, Y.G. and Liu, C.Q. (2011), "Nonlinear correction of photoelectric displacement sensor based on least square support vector machine", J. Cent. South. Univ., 18(5), 1614-1618. https://doi.org/10.1007/s11771-011-0880-6.
- Hoang, N.D. and Pham, A.D. (2016). "Hybrid artificial intelligence approach based on metaheuristic and ML for slope stability assessment: A multinational data analysis", Exp. Syst. Appl., 46, 60-68. https://doi.org/10.1016/j.eswa.2015.10.020
- Jagan, J., Meghana, G. and Samui, P. (2016), "Determination of stability number of layered slope using ANFIS, GPR, RVM and ELM", Int. J. Comput. Res., 23(4), 371-393.
- Karir, D., Ray, A., Bharati, A.K., Chaturvedi, U., Rai, R. and Khandelwal, M. (2022), "Stability prediction of a natural and man-made slope using various ML algorithms", Transport. Geotech., 34, 100745. https://doi.org/10.1016/j.trgeo.2022.100745.
- Li, S., Zhao, H.B. and Ru, Z. (2013), "Slope reliability analysis by updated support vector machine and Monte Carlo simulation", Nat. Hazards, 65, 707-722. https://doi.org/10.1007/s11069-012-0396-x.
- Liu, Z., Shao, J., Xu, W., Chen, H. and Zhang, Y. (2014), "An extreme learning machine approach for slope stability evaluation and prediction", Nat. Hazards, 73(2), 787-804. https://doi.org/10.1007/s11069-014-1106-7.
- Liu, Y.C. and Chen, C.S. (2007), "A new approach for application of rock mass classification on rock slope stability assessment", Eng. Geol., 89(1-2), 129-143. https://doi.org/10.1016/j.enggeo.2006.09.017.
- Lu, P. and Rosenbaum, M.S. (2003), "Artificial neural networks and grey systems for the prediction of slope stability", Nat. Hazards, 30(3), 383-398. https://doi.org/10.1023/B:NHAZ.0000007168.00673.27
- Mahmoodzadeh, A., Mohammadi, M., Hama Ali, H., Ibrahim, H., Abdulhamid, S. and Nejati, H. (2021), "Prediction of safety factors for slope stability: comparison of ML techniques", Nat. Hazards, 111, 1771-1799. https://doi.org/10.1007/s11069-021-05115-8.
- Omar, M., Che Mamat, R., Abdul Rasam, A.R., Ramli, A. and Samad, A. (2021), "Artificial intelligence application for predicting slope stability on soft ground: A comparative study", Int. J. Adv. Technol. Eng. Explor., 8(75), 362-370. https://doi.org/10.19101/IJATEE.2020.762139.
- Pantelidis, L. (2009), "Rock slope stability assessment through rock mass classification systems", Int. J. Rock Mech. Min. Sci., 46(2), 315-325. https://doi.org/10.1016/j.ijrmms.2008.06.003.
- Samadi, H., Hassanpour, J. and Farrokh, E. (2021), "Maximum surface settlement prediction in EPB TBM tunneling using soft computing techniques", J. Phys.: Conference Series, 1973(1), 012195. http://doi.org/10.1088/1742-6596/1973/1/012195.