DOI QR코드

DOI QR Code

Study on mechanical properties of phosphate tailings modified clay as subgrade filler

  • Xiaoqing Zhao (School of Civil and Ocean Engineering, Jiangsu Ocean University) ;
  • Tianfeng Yang (School of Civil and Ocean Engineering, Jiangsu Ocean University) ;
  • Zhongling Zong (School of Civil and Ocean Engineering, Jiangsu Ocean University) ;
  • Teng Liang (School of Civil and Ocean Engineering, Jiangsu Ocean University) ;
  • Zeyu Shen (School of Civil and Ocean Engineering, Jiangsu Ocean University) ;
  • Jiawei Li (School of Civil and Ocean Engineering, Jiangsu Ocean University) ;
  • Gui Zhao (College of civil and transportation engineering, Hohai University)
  • Received : 2022.07.23
  • Accepted : 2024.03.08
  • Published : 2024.03.25

Abstract

To improve the utilization rate of phosphate tailings (PTs) and widen the sources of subgrade filler, the PTs is employed to modify clay, forming a PTs modified clay, applied in the subgrade. Accordingly, the environmental friendliness of PTs was investigated. Subsequently, an optimal proportion was determined through compaction and California Bearing Ratio (CBR) experiments. Afterward, the stability of mixture with the optimal proportion was further evaluated through the water stability and dry-wet stability experiments. Finally, via the gradation and microstructure experiments, the strength mechanism of PTs modified clay was analyzed. The results show that the PTs were classified in the non-hazardous solid wastes, belonging to Class A building materials. With the increase of PTs content and the decrease of clay content, the optimum water content and the swelling degree gradually decrease, while the maximum dry density and CBR first increase and then decrease, reaching their peak value at 50% PTs content, which is the optimal proportion. The resilient modulus of PTs modified clay at the optimal proportion reaches 110.2 MPa. The water stability coefficient becomes stable after soaking for 4 days, while the dry-wet stability coefficient decreases with the increase of cycles and tends to be stable after 8 cycles. Under the long-term action, the dry-wet change has a greater adverse impact than continuous soaking. The analysis demonstrates that the better strength mainly comes from the skeleton role of PTs and the cementation of clay. The systematic laboratory test results and economic analysis collectively provide data evidence for the advantages of PTs modified clay as a subgrade filler.

Keywords

Acknowledgement

The research described in this paper was financially supported by the Natural Science Foundation of Jiangsu Province, grant number BE2021681, Qinglan Project of Jiangsu Higher Education Institutions, Natural Science Foundation of the Jiangsu Higher Education Institutions of China (23KJA580003), Lianyungang City Key Technology Project (SF2230), Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX23-1815) and Industry-University-Research Project of LianSu Expressway, grant number JOUH22089.

References

  1. AASHTO. (1993), AASHTO guide for design of pavement structures. American Association of State Highway, Transportation Officials, US.
  2. Bakhshizadeh, A., Khayat, N. and Horpibulsuk, S. (2022), "Surface stabilization of clay using sodium alginate", Case Studies Constr. Mater., 16, e01006. https://doi.org/10.1016/j.cscm.2022.e01006.
  3. Bera, A.K. and Chakraborty, S. (2015), "Compaction and unconfined compressive strength of sand modified by class f fly ash", Geomech. Eng., 9(2), 261-273. https://doi.org/10.12989/gae.2015.9.2.261.
  4. Chen, Q. (2020), "Road performance and engineering application of soda residue-phosphate tailings- clay admixtures", M.D. Dissertation, Southeast University, Nanjing, China.
  5. Csillag, J., Lukacs, A., Osztoics, E., Csatho, P. and Baczo, G. (2006), "Extraction and analysis of soil solution of phosphate rock and acid treated soil", Commun. Soil Sci. Plant Anal., 37, 2339-2350. https://doi.org/10.1080/00103620600819636.
  6. Ding, Y.F., Wang, J.P., Liu, L.B. and Deng Y. (2019), "Study on the preparation and performance of self-insulation blocks with phosphate tailings", Multipurpose Utilization of Mineral Resources, 1, 96-101. https://doi.org/10.3969/j.issn.1000-6532.2019.01.021.
  7. Dixon-Hardy, D.W. and Engels, J.M. (2007), "Guidelines and recommendations for the safe operation of tailings management facilities", Environ. Eng. Sci., 24(5), 625-637. https://doi.org/10.1089/ees.2006.0133.
  8. Fang, L., Tang, B., Xu, M. and Jiang, F. (2005), "Expansive identification and classify of subgrade padding in expressway", J. Highway Transport. Res. Development, 22(4), 31-34. https://doi.org/10.3969/j.issn.1002-0268.2005.04.009.
  9. GB 5085.3 (2007), Identification standards for hazardous wastes - Identification for extraction toxicity, Ministry of Ecology and Environment of the People's Republic of China, Beijing, China.
  10. GB 6566 (2010), Limits of radionuclides in building materials, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Beijing, China.
  11. Gu, B.W., Zhao, L.W., Hu, J. and Tian, A.G. (2015), "Influence of admixture on making process and property of ooze brick", Materials Reports, 29(2), 446-449.
  12. Haddaji, Y., Majdoubi, H., Mansouri, S., Tamraoui, Y., El bouchti, M., Manoun, B., Oumam, M. and Hannache, H. (2021), "Effect of synthetic fibers on the properties of geopolymers based on non-heat treated phosphate mine tailing", Mater. Chem. Phys., 260, 124147. https://doi.org/10.1016/j.matchemphys.2020.124147.
  13. Hamdane, H., Tamraoui, Y., Mansouri, S., Oumam, M., Bouih, A., El Ghailassi, T., Boulif, R., Manoun, B. and Hannache, H. (2020), "Effect of alkali-mixed content and thermally untreated phosphate sludge dosages on some properties of metakaolin based geopolymer material", Mater. Chem. Phys., 248, 122938. https://doi.org/10.1016/j.matchemphys.2020.122938.
  14. Hu, J., Gu, B.W. and Tian, A.G. (2009), "Approach into radioactivity of phosphate tailings from Jinping Phosphate Mine", Ind. Miner Process., 10, 9-12. https://doi.org/10.16283/j.cnki.hgkwyjg.2009.10.007.
  15. HJ/T299 (2007), Solid waste-Extraction procedure for leaching toxicity-Sulphuric acid & nitric acid method, Ministry of Ecology and Environment of the People's Republic of China, Beijing, China.
  16. JTG 3430 (2020), Test methods of soils for highway engineering, Ministry of Transport of the People's Republic of China, Beijing, China.
  17. JTG D30 (2015), Specification for Design of Highway Subgrade, Ministry of Transport of the People's Republic of China, Beijing, Ch3ina.
  18. JTG D40 (2011), Specifications for Design of Highway Cement Concrete Pavement, Ministry of Transport of the People's Republic of China, Beijing, China.
  19. JTG D50 (2017), Specifications for Design of Highway Asphalt Pavement, Ministry of Transport of the People's Republic of China, Beijing, China.
  20. JTG E51(2009), Test Methods of Materials Stabilized with Inorganic Binders for Highway Engineering, Ministry of Transport of the People's Republic of China, Beijing, China.
  21. Li, M.D., Cong, X., Zhu, L.P., Kong, L.P., Zhang, Z.F., Tian, A.G. and Li, L. (2017), "Experimental study on recycling dredged marine sediment and phosphate tailing to produce earth fill", Mar. Georesour. Geotec., 35(4), 586-591. https://doi.org/10.1080/1064119X.2016.1213340.
  22. Li, X.Y. (2016), "Experimental study on sintered ceramic from phosphate tailings and its utilization of resource reports", M.D. Dissertation, Chongqing University, Chongqing, China.
  23. Li, Y.J., Mei, Z.H., Zhang, X., Ye, F. and Mei, F.D. (2017), "Mechanical performance and hydration mechanisms of cemented paste backfilling materials with phosphate tailings", J. Wuhan Univ. Tech., 39(3), 22-26. https://doi.org/10.3963/j.issn.1671-4431.2017.03.004.
  24. Loutou, M., Taha, Y., Benzaazoua, M., Daafi, Y. and Hakkou, R. (2019), "Valorization of clay by-product from moroccan phosphate mines for the production of fired bricks", J. Cleaner Production, 229, 169-179. https://doi.org/10.1016/j.jclepro.2019.05.003.
  25. Luo, H.B. and Yan, H.M. (2005), "Application of phosphate tailings in subgrade (cushion)", Highway, 5, ,146-148. https://doi.org/10.3969/j.issn.0451-0712.2005.05.032.
  26. Moukannaa, S., Loutou, M., Benzaazoua, M., Vitola, L., Alami, J. and Hakkou, R. (2018), "Recycling of phosphate mine tailings for the production of geopolymers", J. Cleaner Production, 185, 891-903. https://doi.org/10.1016/j.jclepro.2018.03.094.
  27. Moukannaa, S., Nazari, A., Bagheri, A., Loutou, M., Sanjayan, J.G. and Hakkou, R. (2019), "Alkaline fused phosphate mine tailings for geopolymer mortar synthesis: Thermal stability, mechanical and microstructural properties", J. Non-Crystalline Solids, 511, 76-85. https://doi.org/10.1016/j.jnoncrysol.2018.12.031.
  28. Nasiri, H., Khayat, N. and Mirzababaei, M. (2021), "Simple yet quick stabilization of clay using a waste by-product", Transport. Geotech., 28, 100531. http://doi.org/10.1016/j.trgeo.2021.100531.
  29. Ren, Y. and Shao J. (2018), "Study and application of clay modified phosphorus tailings used as embankment filler", Highway, 63 (11), 46-49.
  30. Rico, M., Benito, G. and Diez-Herrero, A. (2008a), "Floods from tailings dam failures", J. Hazardous Mater., 154(1), 79-87. https://doi.org/10.1016/j.jhazmat.2007.09.110.
  31. Rico, M., Benito, G., Salgueiro, A.R., Diez-Herrero, A. and Pereira, H.G. (2008b), "Reported tailings dam failures: A review of the European incidents in the worldwide context", J. Hazardous Mater., 152(2), 846-852. https://doi.org/10.1016/j.jhazmat.2007.07.050.
  32. Ru, X.H. (2010), "Research on non-fired bricks by blast furnace slag and phosphate tailings", M.D. Dissertation, Wuhan University of Technology, Wuhan, China.
  33. Wang, Z. (2017), "Research on mechanical properties of slag phosphorus tailings clay mixture", M.D. Dissertation, Hubei University of Technology, Wuhan, China.
  34. Wei, Z., Yin, G., Wang, J.G., Wan, L. and Li, G. (2012), "Design, construction and management of tailings storage facilities for surface disposal in China: case studies of failures", Waste Management Res., 31(1), 106-112. https://doi.org/10.1177/0734242X124622811.
  35. Wu, J., Li, J., Rao, F. and Yin, W.Z. (2020), "Mechanical property and structural evolution of alkali-activated slag-phosphate mine tailings mortars", Chemosphere, 251, 126367. https://doi.org/10.1016/j.chemosphere.2020.126367.
  36. Yang, W.Q., Zhang, H., He, H.T., Cai, Z.J., Pang, J.T. and Xiao, Z. (2021), "Research progress on flotation reagents for beneficiting phosphate rock", Ind. Miner. Process., 50(11), 29-36. https://doi.org/10.16283/j.cnki.hgkwyjg.2021.11.006.
  37. Yang, Y.H., Wei, Z.A., Chen, Y.L., Li, Y.J. and Li, X.Y. (2017), "Utilizing phosphate mine tailings to produce ceramisite", Constr. Build. Mater., 155, 1081-1090. https://doi.org/10.1016/j.conbuildmat.2017.08.070.
  38. Yu, H., Huang, X., Ning, J.G. and Zhao, Y. S. (2016), "Improving performance of soil stabilizer by scientific combining of industrial wastes", Geomech. Eng., 10(2), 247-256. https://doi.org/10.12989/gae.2016.10.2.247.
  39. Zhang, L., You, D.H., Hu, X.Q., Zhang, J., Zhang, Z.H., Li, G.D. and Peng, X.H. (2023), "Research on preparation of high strength ceramsite by using phosphorus tailings and fly ash", Non-Metallic Mines, 46(4), 13- 17.
  40. Zhang, X., Li, Y.J., Hu, C.Y., Mei, F.D., Huang, Z.Y. and Zhou, K.Q. (2018), "Effect of phosphate tailings and tailing mud on properties of cemented filling materials", J. Hefei Univ. Tech., 41(7), 973-977. https://doi.org/10.3969/j.issn.1003-5060.2018.07.020.
  41. Zhao, X.Q., Liang, T., Yue, Z.C., Zong, Z.L., Li, J.W. and Yin, J.H. (2023a), "Influence of compaction degree on mechanical properties of modified clay with phosphate tailings", Highway, 5, 25-30.
  42. Zhao, X.Q., Shen, Z., Y., Deng, Y.F., Li, J.W., Yue, Z.C. and Liang, T. (2023b), "Freeze-thaw resistance and deterioration mechanism of cement-treated mixture of soda residue and clay", Chinese J. Highway Transport, 37(1). https://doi.org/10.19721/j.cnki.1001-7327.2024.01.000.
  43. Zhao, X.Q., Zhang, Y.H., Li, M.D. and Sun, Y.D. (2012), "Study on factors influencing strength of cement-solidified sea silt road embankment adding phosphate tailings", Highway, 11, 71-75. https://doi.org/10.3969/j.issn.0451-0712.2012.11.017.
  44. Zhao, X.Q., Zhao, C., Li, M.D. and Sun, Y.D. (2011), "Study on optimum water content of solidified silt incorporating phosphorate tailings as embankment", Highway, 12, 34-37.
  45. Zhao, X.Q., Zhao, G., Li, J.W. and Zhang, P. (2019), "Unconfined compressive strength property and its mechanism of construction waste stabilized lightweight soil", Geomech. Eng., 4(19), 307- 314. https://doi.org/10.12989/gae.2019.19.4.307.
  46. Zheng, K.R., Zhou, J. and Gbozee, M. (2015), "Influences of phosphate tailings on hydration and properties of Portland cement", Constr. Build. Mater., 98, 593-601. https://doi.org/10.1016/j.conbuildmat.2015.08.115.
  47. Zhuang, X.S., Wang, K., Li, K. and Wang, J.X. (2019), "Experimental study on modified expansive soil of phosphorous tailings-EPS basalt fiber", Highway Eng., 44(1), 38-43. https://doi.org/10.3969/j.issn.1674-0610.2019.01.007.