DOI QR코드

DOI QR Code

Distortional buckling performance of cold-formed steel lightweight concrete composite columns

  • Yanchun Li (School of Civil Engineering and Communication, North China University of Water Resources and Electric Power) ;
  • Aihong Han (School of Civil Engineering and Communication, North China University of Water Resources and Electric Power) ;
  • Ruibo Li (Yuxing Construction Company) ;
  • Jihao Chen (School of Civil Engineering and Communication, North China University of Water Resources and Electric Power) ;
  • Yanfen Xie (School of Civil Engineering and Communication, North China University of Water Resources and Electric Power) ;
  • Jiaojiao Chen (School of Civil Engineering and Communication, North China University of Water Resources and Electric Power)
  • Received : 2023.10.19
  • Accepted : 2024.02.28
  • Published : 2024.03.25

Abstract

Cold-formed steel (CFS) is prone to buckling failure under loading. Lightweight concrete (LC) made of lightweight aggregate has light weight and excellent thermal insulation performance. However, concrete is brittle in nature which is why different materials have been used to improve this inherent behavior of concrete. The distortional buckling (DB) performance of cold-formed steel-lightweight concrete (CFS-LC) composite columns was investigated in this paper. Firstly, the compressive strength test of foam concrete (FC) and ceramsite concrete (CC) was carried out. The performance of the CFS-LC members was investigated. The test results indicated that the concrete-filled can effectively control the DB of the members. Secondly, finite element (FE) models of each test specimen were developed and validated with the experimental tests followed by extensive parametric studies using numerical analysis based on the validated FE models. The results show that the thickness of the steel and the strength of the concrete-filled were the main factors on the DB and bearing capacity of the members. Finally, the bearing capacity of the test specimens was calculated by using current codes. The results showed that the design results of the AIJ-1997 specification were closer to the experimental and FE values, while other results of specifications were conservative.

Keywords

Acknowledgement

The authors are sincerely appreciated for the National Natural Science Foundation of China (No. 51878055), Key Scientific Research Projects of Universities (23A560011), Key Scientific Research Projects of Universities (22A560013).

References

  1. ABAQUS (2021), ABAQUS Analysis User's Manual, Version 6.21, Dassault Syst'emes Simulia Corp, Providence, RI, USA.
  2. ACI Committee 318 (2005), Building Code Requirements for Reinforced Concrete (ACI 318-89) and Commentary-ACI 318R89. Building code requirements for reinforced concrete (ACI 318-89) and commentary-ACI 318R-89.
  3. AIJ (1997), Recommendations for Design and Construction of Concrete Filled Steel Tubular Structures. Tokoy: Architectural Institute of Japan.
  4. Ananthi G.B.G., Roy K. and Lim J.B.P. (2022), "Behaviour and strength of back-to-back built-up cold-formed steel unequal angle sections with intermediate stiffeners under axial compression", Steel Comp. Struct., 42(1), 1-22. https://doi.org/10.12989/scs.2022.42.1.001.
  5. Anas, S.M., Alam, M., Isleem, H.F., Najm, H.M. and Sabri Sabri, M.M. (2022), "Role of cross-diagonal reinforcements in lieu of seismic confining stirrups in the performance enhancement of square RC columns carrying axial load subjected to close-range explosive loading", Front. Mater., 9, 1002195. https://doi:10.3389/fmats.2022.1002195.
  6. Chen P., Wang Z.X. and Cao S.J. (2023), "Study on axial compressive stress-strain relationship of alkali-activated slag lightweight aggregate concrete", Construct. Build. Mater., 364, 129991. https://dx.doi.org/10.1016/J.CONBUILDMAT.2022.129991.
  7. Cuenca-Moyano, G.M., Cabrera, M. and Lopez-Alonso, M. (2023), "Design of lightweight concrete with olive biomass bottom ash for use in buildings", J. Build. Eng., 69, 106289. https://dx.doi.org/10.1016/J.JOBE.2023.106289.
  8. Ekmekyapar T., Alwan O.H. and Hasan H.G. (2019), "Comparison of classical, double skin and double section CFST stub columns: Experiments and design formulations", J. Construct. Steel Res., 155(4), 192-120. https://dx.doi.org/10.1016/j.jcsr.2018.12.025.
  9. Guan, M., Wei, C., Wang, Y., Lai, Z., Xiao, Q. and Du, H. (2020), "Experimental investigation of axial loaded circular steel tube short columns filled with manufactured sand concrete", Eng. Struct., 221, 111033. https://dx.doi.org/10.1016/j.engstruct.2020.111033.
  10. Han, L.H. (2007), Concrete Filled Steel Tubular Structures: Theory and Practice, Science Press, 69-70. (In Chinese)
  11. Han L.H., Li W. and Bjorhovde R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Construct. Steel Res., 100(9), 211-228. https://doi:10.1016/j.jcsr.2014.04.016.
  12. Hassanein, M.F., Silvestre, N. and Yan, X.F. (2023), "Confinement-based direct design of circular concrete-filled double-skin normal and high strength steel short columns", Thin-Wall. Struct., 183, 110446. https://dx.doi.org/10.1016/J.JCSR.2022.107745.
  13. Hendy C.R., Johnson, R. and Gulvanessian, H. (2006), Design of Composite Steel and Concrete Structures - Part 2: General Rules And Rules For Bridges.
  14. Isleem, H.F., Augustino, D.S., Mohammed, A.S., Najemalden, A. M., Jagadesh, P., Qaidi, S. and Sabri, M.M.S. (2023), "Finite element, analytical, artificial neural network models for carbon fibre reinforced polymer confined concrete filled steel columns with elliptical cross sections", Front. Mater., 9, 1115394. https://doi: 10.3389/fmats.2022.1115394.
  15. Isleem, H.F., Tayeh, B.A., Abid, M., Iqbal, M., Mohamed, A.M. and Sherbiny, M.G.E. (2022), "Finite element and artificial neural network modeling of FRP-RC columns under axial compression loading", Front. Mater., 9, 888909. https://doi:10.3389/fmats.2022.888909.
  16. Isleem, H.F., Yusuf, B.O., Xingchong, W., Qiong, T., Jagadesh, P. and Augustino, D.S. (2024), "Analytical and numerical investigation of polyvinyl chloride (PVC) confined concrete columns under different loading conditions", Australian J. Struct. Eng., 25(1), 69-97. https://doi.org/10.1080/13287982.2023.2216566.
  17. Isleem, H.F., Zewudie, B.B., Bahrami, A., Kumar, R., Xingchong, W. and Samui, P. (2024), "Parametric investigation of rectangular CFRP-confined concrete columns reinforced by inner elliptical steel tubes using finite element and machine learning models", Heliyon, 10(2). https://doi.org/10.1016/j.heliyon.2023.e23666.
  18. JGJ/T341-2014(2014), Foam Concrete Application Technical Specification, Beijing: China Construction Industry Press.
  19. JGJ383-2016(2016), Technical Specification for Lightweight Steel and Lightweight Concrete Structures, China Construction Industry Press. (In Chinese)
  20. JGJ51-2006(2006), Technical Specification for Lightweight Aggregate Concrete. China Building Industry Press. (In Chinese)
  21. Kumar, M.V.A. and Kalyanaraman, V. (2014), "Distortional buckling of CFS stiffened lipped channel compression members", J. Struct. Eng., 140(12),1-14. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001027.
  22. Lai, B.L., Richard Liew, J.Y. and Xiong, M.X. (2019), "Experimental study on high strength concrete encased steel composite short columns", Construct. Build. Mater., 228, 116640. https://dx.doi.org/10.1016/j.conbuildmat.2019.08.021.
  23. Landesmann, A. and Camotim, D. (2013), "On the Direct Strength Method (DSM) design of cold-formed steel columns against distortional failure", Thin-Wall. Struct., 67(6),168-187. https://dx.doi.org/10.1016/j.tws.2013.01.016.
  24. Lau S.C.W. and Hancock, G.J. (1987), "Distortional buckling formulas for channel columns", J. Struct. Eng. ASCE, 113(5), 1063-1078. https://doi.org/10.1061/A5CE0733-9445 1987113:5 1063.
  25. Li X. and Zhang Y.Z. (2021), "Research on the ABAQUS constitutive model of rectangular steel tube concrete columns with flat stiffeners under static load", Progress Build. Steel, Struct., 23(08), 84-96.
  26. Li, Y.C., Zhou, T.H. and Zhang, L. (2021), "Distortional buckling behavior of cold-formed steel built-up closed section columns", Thin-Wal. Struct., 166,108069. https://dx.doi.org/10.1016/J.TWS.2021.108069.
  27. Li, Z.Y. (2020), "Study on axial compression behavior of coldformed thin-walled steel-foamed concrete columns", Shandong Univer. Sci. Technol. (In Chinese)
  28. Mahar A.M., Jayachandran S.A. and Mahendran M. (2023), "Local-distortional interaction behaviour and design of coldformed steel built-up columns", J. Constr. Steel Res., 200, 107654. https://doi.org/10.1016/j.jcsr.2022.107654.
  29. Orlando M., Lavacchini G., Ortolani B. and Spinelli P. (2017), "Experimental capacity of perforated cold-formed steel open sections under compression and bending", Steel Comp. Struct., 24(2), 201-211. https://doi.org/10.12989/scs.2017.24.2.201.
  30. Pierin, I. and Silva, V.P. (2015), "Distortional buckling resistance of cold-formed steel", J. Braz. Soc. Mech. Sci. Eng., 37(4), 1163-1171. https://dx.doi.org/10.1007/s40430-014-0252-x.
  31. Qiao, W.T., Wang, Y.H., Zhu, R.J., Li, R.F. and Zhao, M.S. (2021), "Experimental study on the axial bearing capacity of built-up cold-formed thin.walled steel multi-limb-section columns", Steel Comp. Struct., 40(6), 781-794.
  32. Qiao, W., Zhang, X., Xu, Q. and Wang, G. (2023), "Seismic performance of thin-walled steel and concrete composite column-corrugated steel shear wall structure", J. Construct. Steel Res., 201, 107745. https://dx.doi.org/10.1016/J.JCSR.2022.107745.
  33. Rahnavard, R., Craveiro, H.D., Lopes, M., Simoes, R.A., Laim, L. and Rebelo, C. (2022), "Concrete-filled cold-formed steel (CFCFS) built-up columns under compression: Test and design", Thin-Wall. Struct., 179, 109603. https://dx.doi.org/10.1016/J.TWS.2022.109603.
  34. Roy, K., Lau, H.H., Ting, T.C.H., Chen, B. and Lim, J.B.P. (2020), "Flexural capacity of gapped built-up cold-formed steel channel sections including web stiffeners", J. Constr. Stee/ Res., 172. 106154. https://doi.org/10.101 6/.jcsr.2020.106154. https://doi.org/10.1016/.jcsr.2020.106154
  35. Salgar, P.B. and Patil, P.S. (2019), "Experimental Investigation on behavior of high‑strength light weight concrete‑filled steel tube strut under axial compression", Transact. Indian Nat. Academy Eng., 4, 207-214. https://doi.org/10.1007/s41403-019-00077-7.
  36. Schafer, B.W. (2012), CUFSM4.05-Finite Strip Buckling Analysis of Thin-Wall Members, Department of Civil Engineering, Johns Hopkins University, Baltimore, USA.
  37. Senthilkumar, R., Divya, M., Bahurudeen, A., Avudaiappan, S. and Tsavdaridis, K.D. (2022), "Behaviour of cold-formed steelconcrete composite columns under axial compression: Experimental and numerical study", Structures, 44, 487-502. https://dx.doi.org/10.1016/J.ISTRUC.2022.07.086.
  38. Shen J.J. and Wadee M.A. (2018), "Length effects on interactive buckling in thin-walled rectangular hollow section struts", ThinWall. Struct., 128, 152-170. https://dx.doi.org/10.1016/j.tws.2017.04.006.
  39. Song Y.C., Li J. and Chen Y.Y. (2019), "Local and post-local buckling of normal/high strength steel sections with concrete infill", Thin-Wall. Struct., 138, 155-169. https://dx.doi.org/10.1016/j.tws.2019.02.004.
  40. Ting, T.C.H, Roy, K., Lau, H.H. and Lim, J.B.P. (2018), "Effect of screw spacing on behavior of axiallyloaded back-to-back coldformed steel built-up channel sections", Adv. Struct. Eng., 21(3), 474-487. https://doi.org/10.1177/1369433217719986. https://doi.org/10.1177/1369433217719986.
  41. Usman, M., Farooq, S.H., Umair, M. and Hanif, A. (2020), "Axial compressive behavior of confined steel fiber reinforced high strength concrete", Construct. Build. Mater., 230, 117043. https://dx.doi.org/10.1016/j.conbuildmat.2019.117043.
  42. Wang, Z.S., Han, J.Y., Wei, J., Lu, J.L. and Li, J.L. (2022), "The axial compression mechanical properties and factors influencing spiral-ribbed thin-walled square concrete-filled steel tube composite members", Case Studies Construct. Mater., 17, e01510. https://dx.doi.org/10.1016/J.CSCM.2022.E01510.
  43. Yang, R.Q. (2020), "Study on the properties of fly ash-slag geopolymer foam concrete", Liaoning Univ. Sci. Technol., (In Chinese)
  44. Ye, J., Meza, F.J., Hajirasouliha, I., Becque, J., Shepherd, P. and Pilakoutas, K. (2019), "Experimental investigation of crosssectional bending capacity of cold-formed steel channels subject to local-distortional buckling interaction", J. Struct. Eng., 145(7), 04019064. https://doi.org/10.1061/(ASCE)ST.1943-541X0002344.
  45. Zhang, F., Lu, Y.Y., Li, S. and Zhang, W.L. (2018), "Eccentrically compressive behaviour of RC square short columnsreinforced with a new composite method", Steel Comp. Struct., 27(1), 95-108. https://doi.org/10.12989/scs.2018.27.1.095.
  46. Zhi, X.D., Guo, M.H. and Wang, C. (2019), "Axial compressive mechanical properties of foam concrete filled circular steel tubes", J. Zhejiang Univ., 53(10), 1927-1935. (In Chinese)
  47. Zhou, Y.W., Liu, X.M. and Xing, F. (2017), "Behavior and modeling of FRP-concrete-steel double-skin tubular columns made of full lightweight aggregate concrete", Construct. Build. Mater., 139(15), 52-63. https://dx.doi.org/10.1016/j.conbuildmat.2016.12.154.