DOI QR코드

DOI QR Code

Whole-genome doubling is a double-edged sword: the heterogeneous role of whole-genome doubling in various cancer types

  • Eunhyong Chang (Department of Integrated Biomedical and Life Science, Korea University) ;
  • Joon-Yong An (Department of Integrated Biomedical and Life Science, Korea University)
  • Received : 2023.12.12
  • Accepted : 2024.02.01
  • Published : 2024.03.31

Abstract

Whole-genome doubling (WGD), characterized by the duplication of an entire set of chromosomes, is commonly observed in various tumors, occurring in approximately 30-40% of patients with different cancer types. The effect of WGD on tumorigenesis varies depending on the context, either promoting or suppressing tumor progression. Recent advances in genomic technologies and large-scale clinical investigations have led to the identification of the complex patterns of genomic alterations underlying WGD and their functional consequences on tumorigenesis progression and prognosis. Our comprehensive review aims to summarize the causes and effects of WGD on tumorigenesis, highlighting its dualistic influence on cancer cells. We then introduce recent findings on WGD-associated molecular signatures and genetic aberrations and a novel subtype related to WGD. Finally, we discuss the clinical implications of WGD in cancer subtype classification and future therapeutic interventions. Overall, a comprehensive understanding of WGD in cancer biology is crucial to unraveling its complex role in tumorigenesis and identifying novel therapeutic strategies.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2019M3E5D3073568 and NRF-2021R1A4A1029097 to J.Y.A.) and Korea University to J.Y.A. E.H.C. received a scholarship from the Kwanjeong Educational Foundation and the Brain Korea (BK21) FOUR education program.

References

  1. Bielski CM, Zehir A, Penson AV et al (2018) Genome doubling shapes the evolution and prognosis of advanced cancers. Nat Genet 50, 1189-1195 https://doi.org/10.1038/s41588-018-0165-1
  2. Quinton RJ, DiDomizio A, Vittoria MA et al (2021) Whole-genome doubling confers unique genetic vulnerabilities on tumour cells. Nature 590, 492-497 https://doi.org/10.1038/s41586-020-03133-3
  3. Gillette MA, Satpathy S, Cao S et al (2020) Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell 182, 200-225 e235
  4. Dewhurst SM, McGranahan N, Burrell RA et al (2014) Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. Cancer Discov 4, 175-185 https://doi.org/10.1158/2159-8290.CD-13-0285
  5. Lopez S, Lim EL, Horswell S et al (2020) Interplay between whole-genome doubling and the accumulation of deleterious alterations in cancer evolution. Nat Genet 52, 283-293 https://doi.org/10.1038/s41588-020-0584-7
  6. Ganem NJ and Pellman D (2007) Limiting the proliferation of polyploid cells. Cell 131, 437-440 https://doi.org/10.1016/j.cell.2007.10.024
  7. Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT and Pellman D (2005) Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437, 1043-1047 https://doi.org/10.1038/nature04217
  8. Ganem NJ, Cornils H, Chiu SY et al (2014) Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 158, 833-848 https://doi.org/10.1016/j.cell.2014.06.029
  9. Senovilla L, Vitale I, Martins I et al (2012) An immunosurveillance mechanism controls cancer cell ploidy. Science 337, 1678-1684 https://doi.org/10.1126/science.1224922
  10. Andreassen PR, Lohez OD, Lacroix FB and Margolis RL (2001) Tetraploid state induces p53-dependent arrest of non-transformed mammalian cells in G1. Mol Biol Cell 12, 1315-1328 https://doi.org/10.1091/mbc.12.5.1315
  11. Sanz-Gomez N, Gonzalez-Alvarez M, De Las Rivas J and de Carcer G (2023) Whole-genome doubling as a source of cancer: how, when, where, and why? Front Cell Dev Biol 11, 1209136
  12. Davoli T, Denchi EL and de Lange T (2010) Persistent telomere damage induces bypass of mitosis and tetraploidy. Cell 141, 81-93 https://doi.org/10.1016/j.cell.2010.01.031
  13. Jeong HC, Gil NY, Lee HS et al (2015) Timely degradation of Wip1 phosphatase by APC/C activator protein Cdh1 is necessary for normal mitotic progression. J Cell Biochem 116, 1602-1612 https://doi.org/10.1002/jcb.25114
  14. Zeng J, Hills SA, Ozono E and Diffley JFX (2023) Cyclin E-induced replicative stress drives p53-dependent whole-genome duplication. Cell 186, 528-542 e514
  15. Brito DA and Rieder CL (2006) Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr Biol 16, 1194-1200 https://doi.org/10.1016/j.cub.2006.04.043
  16. Shi Q and King RW (2005) Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 437, 1038-1042 https://doi.org/10.1038/nature03958
  17. Duelli DM, Padilla-Nash HM, Berman D, Murphy KM, Ried T and Lazebnik Y (2007) A virus causes cancer by inducing massive chromosomal instability through cell fusion. Curr Biol 17, 431-437 https://doi.org/10.1016/j.cub.2007.01.049
  18. Overholtzer M, Mailleux AA, Mouneimne G et al (2007) A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131, 966-979 https://doi.org/10.1016/j.cell.2007.10.040
  19. Krajcovic M, Johnson NB, Sun Q et al (2011) A non-genetic route to aneuploidy in human cancers. Nat Cell Biol 13, 324-330 https://doi.org/10.1038/ncb2174
  20. Gjelsvik KJ, Besen-McNally R and Losick VP (2019) Solving the polyploid mystery in health and disease. Trends Genet 35, 6-14 https://doi.org/10.1016/j.tig.2018.10.005
  21. Edgar BA, Zielke N and Gutierrez C (2014) Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. Nat Rev Mol Cell Biol 15, 197-210 https://doi.org/10.1038/nrm3756
  22. Duncan AW, Taylor MH, Hickey RD et al (2010) The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature 467, 707-710 https://doi.org/10.1038/nature09414
  23. Al-Rawi DH and Bakhoum SF (2022) Chromosomal instability as a source of genomic plasticity. Curr Opin Genet Dev 74, 101913
  24. Olaharski AJ, Sotelo R, Solorza-Luna G et al (2006) Tetra-ploidy and chromosomal instability are early events during cervical carcinogenesis. Carcinogenesis 27, 337-343 https://doi.org/10.1093/carcin/bgi218
  25. Song S, Jung S and Kwon M (2023) Expanding roles of centrosome abnormalities in cancers. BMB Rep 56, 216-224 https://doi.org/10.5483/BMBRep.2023-0025
  26. King RW (2008) When 2+2=5: the origins and fates of aneuploid and tetraploid cells. Biochim Biophys Acta 1786, 4-14 https://doi.org/10.1016/j.bbcan.2008.07.007
  27. Coward J and Harding A (2014) Size does matter: why polyploid tumor cells are critical drug targets in the war on cancer. Front Oncol 4, 123
  28. Zhang J, Qiao Q, Xu H, Zhou R and Liu X (2022) Human cell polyploidization: the good and the evil. Semin Cancer Biol 81, 54-63 https://doi.org/10.1016/j.semcancer.2021.04.005
  29. Lambuta RA, Nanni L, Liu Y et al (2023) Whole-genome doubling drives oncogenic loss of chromatin segregation. Nature 615, 925-933 https://doi.org/10.1038/s41586-023-05794-2
  30. Gemble S, Wardenaar R, Keuper K et al (2022) Genetic instability from a single S phase after whole-genome duplication. Nature 604, 146-151 https://doi.org/10.1038/s41586-022-04578-4
  31. Andreassen PR, Lacroix FoB, Lohez OD and Margolis RL (2001) Neither p21WAF1 nor 14-3-3σ prevents G2 progression to mitotic catastrophe in human colon carcinoma cells after DNA damage, but p21WAF1 induces stable G1 arrest in resulting tetraploid cells. Cancer Res 61, 7660-7668
  32. Jo Y and Shin DY (2017) Repression of the F-box protein Skp2 is essential for actin damage-induced tetraploid G1 arrest. BMB Rep 50, 379-383 https://doi.org/10.5483/BMBRep.2017.50.7.063
  33. Aylon Y, Ofir-Rosenfeld Y, Yabuta N et al (2010) The Lats2 tumor suppressor augments p53-mediated apoptosis by promoting the nuclear proapoptotic function of ASPP1. Genes Dev 24, 2420-2429 https://doi.org/10.1101/gad.1954410
  34. Carter SL, Cibulskis K, Helman E et al (2012) Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 30, 413-421 https://doi.org/10.1038/nbt.2203
  35. Taylor AM, Shih J, Ha G et al (2018) Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell 33, 676-689 e673
  36. Steele CD, Abbasi A, Islam SMA et al (2022) Signatures of copy number alterations in human cancer. Nature 606, 984-991 https://doi.org/10.1038/s41586-022-04738-6
  37. Shen R and Seshan VE (2016) FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic Acids Res 44, e131
  38. Priestley P, Baber J, Lolkema MP et al (2019) Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210-216 https://doi.org/10.1038/s41586-019-1689-y
  39. Cameron DL, Baber J, Shale C et al (2019) GRIDSS, PURPLE, LINX: unscrambling the tumor genome via integrated analysis of structural variation and copy number. BioRxiv, 781013
  40. Frankell AM, Dietzen M, Al Bakir M et al (2023) The evolution of lung cancer and impact of subclonal selection in TRACERx. Nature 616, 525-533 https://doi.org/10.1038/s41586-023-05783-5
  41. Offin M, Chan JM, Tenet M et al (2019) Concurrent RB1 and TP53 alterations define a subset of EGFR-mutant lung cancers at risk for histologic transformation and inferior clinical outcomes. J Thorac Oncol 14, 1784-1793 https://doi.org/10.1016/j.jtho.2019.06.002
  42. Zhang T, Joubert P, Ansari-Pour N et al (2021) Genomic and evolutionary classification of lung cancer in never smokers. Nat Genet 53, 1348-1359 https://doi.org/10.1038/s41588-021-00920-0
  43. Nahar R, Zhai W, Zhang T et al (2018) Elucidating the genomic architecture of Asian EGFR-mutant lung adenocarcinoma through multi-region exome sequencing. Nat Commun 9, 216
  44. De Bruin EC, McGranahan N, Mitter R et al (2014) Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346, 251-256 https://doi.org/10.1126/science.1253462
  45. Choudhary A, Zachek B, Lera RF et al (2016) Identification of selective lead compounds for treatment of high-ploidy breast cancer. Mol Cancer Ther 15, 48-59 https://doi.org/10.1158/1535-7163.MCT-15-0527
  46. Newcomb R, Dean E, McKinney BJ and Alvarez JV (2021) Context-dependent effects of whole-genome duplication during mammary tumor recurrence. Sci Rep 11, 14932
  47. Minussi DC, Nicholson MD, Ye H et al (2021) Breast tumours maintain a reservoir of subclonal diversity during expansion. Nature 592, 302-308 https://doi.org/10.1038/s41586-021-03357-x
  48. Berenjeno IM, Pineiro R, Castillo SD et al (2017) Oncogenic PIK3CA induces centrosome amplification and tolerance to genome doubling. Nat Commun 8, 1773
  49. Yates LR, Knappskog S, Wedge D et al (2017) Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32, 169-184 e167
  50. Guinney J, Dienstmann R, Wang X et al (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21, 1350-1356 https://doi.org/10.1038/nm.3967
  51. Kim JE, Choi J, Sung CO et al (2021) High prevalence of TP53 loss and whole-genome doubling in early-onset colorectal cancer. Exp Mol Med 53, 446-456 https://doi.org/10.1038/s12276-021-00583-1
  52. Cohen-Sharir Y, McFarland JM, Abdusamad M et al (2021) Aneuploidy renders cancer cells vulnerable to mitotic checkpoint inhibition. Nature 590, 486-491 https://doi.org/10.1038/s41586-020-03114-6
  53. Kabel J, Henriksen TV, Demuth C et al (2023) Impact of whole genome doubling on detection of circulating tumor DNA in colorectal cancer. Cancers 15, 1136
  54. Vigano C, von Schubert C, Ahrne E et al (2018) Quantitative proteomic and phosphoproteomic comparison of human colon cancer DLD-1 cells differing in ploidy and chromosome stability. Mol Biol Cell 29, 1031-1047 https://doi.org/10.1091/mbc.E17-10-0577
  55. Chan-Seng-Yue M, Kim JC, Wilson GW et al (2020) Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat Genet 52, 231-240 https://doi.org/10.1038/s41588-019-0566-9
  56. Sakamoto H, Attiyeh MA, Gerold JM et al (2020) The evolutionary origins of recurrent pancreatic cancer. Cancer Discov 10, 792-805 https://doi.org/10.1158/2159-8290.CD-19-1508
  57. Notta F, Chan-Seng-Yue M, Lemire M et al (2016) A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature 538, 378-382 https://doi.org/10.1038/nature19823
  58. Baslan T, Morris JPt, Zhao Z et al (2022) Ordered and deterministic cancer genome evolution after p53 loss. Nature 608, 795-802 https://doi.org/10.1038/s41586-022-05082-5
  59. Lopez-Gines C, Gil-Benso R, Ferrer-Luna R et al (2010) New pattern of EGFR amplification in glioblastoma and the relationship of gene copy number with gene expression profile. Mod Pathol 23, 856-865 https://doi.org/10.1038/modpathol.2010.62
  60. Hadi K, Yao X, Behr JM et al (2020) Distinct classes of complex structural variation uncovered across thousands of cancer genome graphs. Cell 183, 197-210 e132
  61. Furgason JM, Koncar RF, Michelhaugh SK et al (2015) Whole genome sequence analysis links chromothripsis to EGFR, MDM2, MDM4, and CDK4 amplification in glioblastoma. Oncoscience 2, 618
  62. Castro MP, Khanlou N, Fallah A et al (2022) Targeting chromosome 12q amplification in relapsed glioblastoma: the use of computational biological modeling to identify effective therapy-a case report. Ann Transl Med 10, 1289
  63. Walentynowicz KA, Engelhardt D, Cristea S et al (2023) Single-cell heterogeneity of EGFR and CDK4 co-amplification is linked to immune infiltration in glioblastoma. Cell Rep 42, 112235
  64. Favero F, McGranahan N, Salm M et al (2015) Glioblastoma adaptation traced through decline of an IDH1 clonal driver and macro-evolution of a double-minute chromosome. Ann Oncol 26, 880-887 https://doi.org/10.1093/annonc/mdv127
  65. Heo YJ, Hwa C, Lee GH, Park JM and An JY (2021) Integrative multi-omics approaches in cancer research: from biological networks to clinical subtypes. Mol Cells 44, 433-443 https://doi.org/10.14348/molcells.2021.0042
  66. Satpathy S, Krug K, Jean Beltran PM et al (2021) A proteogenomic portrait of lung squamous cell carcinoma. Cell 184, 4348-4371 e4340
  67. Krug K, Jaehnig EJ, Satpathy S et al (2020) Proteogenomic landscape of breast cancer tumorigenesis and targeted therapy. Cell 183, 1436-1456 e1431
  68. Huang C, Chen L, Savage SR et al (2021) Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. Cancer Cell 39, 361-379 e316
  69. Dou Y, Kawaler EA, Cui Zhou D et al (2020) Proteogenomic characterization of endometrial carcinoma. Cell 180, 729-748 e726
  70. Cao L, Huang C, Cui Zhou D et al (2021) Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell 184, 5031-5052 e5026
  71. Wang LB, Karpova A, Gritsenko MA et al (2021) Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell 39, 509-528 e520
  72. Vasaikar S, Huang C, Wang X et al (2019) Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell 177, 1035-1049 e1019
  73. Tarantino G, Ricker CA, Wang A et al (2022) Genomic heterogeneity and ploidy identify patients with intrinsic resistance to PD-1 blockade in metastatic melanoma. BioRxiv, 2022.2012. 2011.519808
  74. Alexandrov LB, Kim J, Haradhvala NJ et al (2020) The repertoire of mutational signatures in human cancer. Nature 578, 94-101 https://doi.org/10.1038/s41586-020-1943-3