DOI QR코드

DOI QR Code

Real-time online damage localisation using vibration measurements of structures under variable environmental conditions

  • K. Lakshmi (CSIR-Structural Engineering Research Centre, CSIR Campus)
  • 투고 : 2023.06.20
  • 심사 : 2024.01.29
  • 발행 : 2024.03.25

초록

Safety and structural integrity of civil structures, like bridges and buildings, can be substantially enhanced by employing appropriate structural health monitoring (SHM) techniques for timely diagnosis of incipient damages. The information gathered from health monitoring of important infrastructure helps in making informed decisions on their maintenance. This ensures smooth, uninterrupted operation of the civil infrastructure and also cuts down the overall maintenance cost. With an early warning system, SHM can protect human life during major structural failures. A real-time online damage localization technique is proposed using only the vibration measurements in this paper. The concept of the 'Degree of Scatter' (DoS) of the vibration measurements is used to generate a spatial profile, and fractal dimension theory is used for damage detection and localization in the proposed two-phase algorithm. Further, it ensures robustness against environmental and operational variability (EoV). The proposed method works only with output-only responses and does not require correlated finite element models. Investigations are carried out to test the presented algorithm, using the synthetic data generated from a simply supported beam, a 25-storey shear building model, and also experimental data obtained from the lab-level experiments on a steel I-beam and a ten-storey framed structure. The investigations suggest that the proposed damage localization algorithm is capable of isolating the influence of the confounding factors associated with EoV while detecting and localizing damage even with noisy measurements.

키워드

과제정보

The research work reported in this paper is part of the mission mode project, HCP0018, funded by the Council of Scientific and Industrial Research (CSIR), India, during 2018-20. The authors gratefully acknowledge the support of the technical staff of SHM lab, CSIR-SERC, during the experimental work.

참고문헌

  1. An, Y., Chatzi, E., Sim, S.H., Laflamme, S., Blachowski, B. and Ou, J. (2019), "Recent progress and future trends on damage identification methods for bridge structures", Struct. Control Health Monitor., 26(10), e2416. https://doi.org/10.1002/stc.2416
  2. Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M. and Inman, D.J. (2021), "A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications", Mech. Syst. Signal Process., 147, 107077. https://doi.org/10.1016/j.ymssp.2020.107077
  3. Bernagozzi, G., Achilli, A., Betti, R., Diotallevi, P.P., Landi, L., Quqa, S. and Tronci, E.M. (2021), "On the use of multivariate autoregressive models for vibration-based damage detection and localization", Smart Struct. Syst., Int. J., 27(2), 335-350. https://doi.org/10.12989/sss.2021.27.2.335
  4. Beygzadeh, S., Torkzadeh, P. and Salajegheh, E. (2022), "Two-stage structural damage detection method using dynamic responses based on Kalman filter and particle swarm optimization", Struct. Eng. Mech., Int. J., 83(5), 593-607. https://doi.org/10.12989/sem.2022.83.5.593
  5. Cao, S., Guo, N. and Xu, C. (2022), "Robust damage localization in plate-type structures by using an enhanced robust principal component analysis and data fusion technique", Mech. Syst. Signal Process., 162, 108091. https://doi.org/10.1016/j.ymssp.2021.108091
  6. Chegeni, M.H., Sharbatdar, M.K., Mahjoub, R. and Raftari, M. (2022), "New supervised learning classifiers for structural damage diagnosis using time series features from a new feature extraction technique", Earthq. Eng. Eng. Vib., 21(1), 169-191. https://doi.org/10.1007/s11803-022-2079-2
  7. Das, S. and Roy, K. (2022), "A state-of-the-art review on FRF-based structural damage detection: Development in last two decades and way forward", Int. J. Struct. Stabil. Dyn., 22(02), 2230001.https://doi.org/10.1142/S0219455422300014
  8. Do, N.T. and Gul, M. (2020), "A time series based damage detection method for obtaining separate mass and stiffness damage features of shear-type structures", Eng. Struct., 208, 109914. https://doi.org/10.1016/j.engstruct.2019.109914
  9. Entezami, A., Shariatmadar, H. and Mariani, S. (2020), "Early damage assessment in large-scale structures by innovative statistical pattern recognition methods based on time series modeling and novelty detection", Adv. Eng. Software, 150, 102923. https://doi.org/10.1016/j.advengsoft.2020.102923
  10. Esteller, R., Vachtsevanos, G., Echauz, J. and Lilt, B. (1999), "A comparison of fractal dimension algorithms using synthetic and experimental data", In: 1999 IEEE International Symposium on Circuits and Systems (ISCAS), Vol. 3, pp. 199-202. https://doi.org/10.1109/ISCAS.1999.778819
  11. Guo, T., Zhang, M., Zhu, R., Zong, Y. and Pan, Z. (2022), "Vibration-based structural health monitoring using CAE-aided unsupervised deep learning", Smart Struct. Syst., Int. J., 30(6), 557-569. https://doi.org/10.12989/sss.2022.30.6.557
  12. Hao, J., Zhu, X., Yu, Y., Zhang, C. and Li, J. (2022), "Damage localization and quantification of a truss bridge using PCA and convolutional neural network", Smart Struct. Syst., Int. J., 30(6), 673-686. https://doi.org/10.12989/sss.2022.30.6.673
  13. Higuchi, T. (1988), "Approach to an irregular time series on the basis of the fractal theory", Physica D: Nonlinear Phenom., 31(2), 277-283. https://doi.org/10.1016/0167-2789(88)90081-4
  14. Huang, J.Z., Li, D.S. and Li, H.N. (2023), "A new regime-switching cointegration method for structural health monitoring under changing environmental and operational conditions", Measurement, 212, 112682. https://doi.org/10.1016/j.measurement.2023.112682
  15. Katunin, A., dos Santos, J.V.A. and Lopes, H. (2021), "Damage identification by wavelet analysis of modal rotation differences", Structures, 30, 1-10. https://doi.org/10.1016/j.istruc.2021.01.010
  16. Katz, M.J. (1988), "Fractals and the analysis of waveforms", Comput. Biol. Med., 18(3), 145-156. https://doi.org/10.1016/0010-4825(88)90041-8
  17. Krishansamy, L. and Arumulla, R.M.R. (2019), "Multi constrained optimization combining ARMAX with differential search for damage assessment", Struct. Eng. Mech., Int. J., 72(6), 689-712.https://doi.org/10.12989/.2019.72.6.689
  18. Kumar, K., Biswas, P.K. and Dhang, N. (2020), "Time series-based SHM using PCA with application to ASCE benchmark structure", J. Civil Struct. Health Monitor., 10, 899-911. https://doi.org/10.1007/s13349-020-00423-2
  19. Lakshmi, K. (2020), "A multi-model based approach for the detection of subtle structural damage considering environmental variability", Int. J. Struct. Stabil. Dyn., 20(03), 2050038. https://doi.org/10.1142/S0219455420500388
  20. Lakshmi, K. (2021), "Detection and quantification of damage in bridges using a hybrid algorithm with spatial filters under environmental and operational variability", Structures, 32, 617-631. https://doi.org/10.1016/j.istruc.2021.03.031
  21. Lakshmi, K. and Rama Mohan Rao, A. (2018a), "A hybrid structural health monitoring technique for detection of subtle structural damage", Smart Struct. Syst., Int. J., 22(5), 587-609. https://doi.org/10.12989/sss.2018.22.5.587
  22. Lakshmi, K. and Rama Mohan Rao, A. (2018b), "Output-only damage localization technique using time series model", Sadhana, 43, 1-17. https://doi.org/10.1007/s12046-018-0912-0
  23. Lakshmi, K. and Rama Mohan Rao, A. (2019), "Baseline-free hybrid diagnostic technique for detection of minor incipient damage in the structure", J. Perform. Constr. Facil., 33(2), 04019018. https://doi.org/10.1061/(ASCE)CF.1943-5509.00012
  24. Li, H., Huang, Y., Ou, J. and Bao, Y. (2011), "Fractal dimension-based damage detection method for beams with a uniform cross-section", Comput.-Aided Civil Infrastr. Eng., 26(3), 190-206. https://doi.org/10.1111/j.1467-8667.2010.00686.x
  25. Liu, W., Rui, E., Yuan, L., Chen, S.Y., Zheng, Y. and Ni, Y.Q. (2023), "A novel computer vision-based vibration measurement and coarse-to-fine damage assessment method for truss bridges", Smart Struct. Syst., Int. J., 31(4), 393-407. https://doi.org/10.12989/sss.2023.31.4.393
  26. Nguyen-Ngoc, L., Tran, N. H., Bui-Tien, T., Mai-Duc, A., Abdel Wahab, M., X Nguyen, H. and De Roeck, G. (2021), "Damage detection in structures using particle swarm optimization combined with artificial neural network", Smart Struct. Syst., Int. J., 28(1), 1-12. https://doi.org/10.12989/sss.2021.28.1.001
  27. Normant, F. and Tricot, C. (1991), "Method for evaluating the fractal dimension of curves using convex hulls", Phys. Review A, 43(12), 6518. https://doi.org/10.1103/PhysRevA.43.6518
  28. Paramanathan, P. and Uthayakumar, R. (2008), "An algorithm for computing the fractal dimension of waveforms", Appl. Mathe. Computat., 195(2), 598-603. https://doi.org/10.1016/j.amc.2007.05.011
  29. Rama Mohan Rao, A. and Lakshmi, K. (2015), "Damage diagnostic technique combining POD with time-frequency analysis and dynamic quantum PSO", Meccanica, 50, 1551-1578. https://doi.org/10.1007/s11012-015-0106-3
  30. Rao, A.R.M. and Anandakumar, G. (2007), "Optimal placement of sensors for structural system identification and health monitoring using a hybrid swarm intelligence technique", Smart Mater. Struct., 16(6), 2658. https://doi.org/10.1088/0964-1726/16/6/071
  31. Rao, A.R.M., Lakshmi, K. and Kumar, S.K. (2015), "Detection of delamination in laminated composites with limited measurements combining PCA and dynamic QPSO", Adv. Eng. Software, 86, 85-106. https://doi.org/10.1016/j.advengsoft.2015.04.005
  32. Sanchez, W.D., de Brito, J.V. and Avila, S.M. (2020), "Structural health monitoring using synchrosqueezed wavelet transform on IASC-ASCE benchmark phase I", Int. J. Struct. Stabil. Dyn., 20(12), 2050138. https://doi.org/10.1142/S0219455420501382
  33. Sarmadi, H., Entezami, A., Salar, M. and De Michele, C. (2021), "Bridge health monitoring in environmental variability by new clustering and threshold estimation methods", J. Civil Struct. Health Monitor., 11, 629-644. https://doi.org/10.1007/s13349-021-00472-1
  34. Shallan, O. and Hamdy, O. (2022), "Quantification and location damage detection of plane and space truss using residual force method and teaching-learning based optimization algorithm", Struct. Eng. Mech., Int. J., 81(2), 195-203. https://doi.org/10.12989/sem.2022.81.2.195
  35. Torzoni, M., Rosafalco, L., Manzoni, A., Mariani, S. and Corigliano, A. (2022), "SHM under varying environmental conditions: An approach based on model order reduction and deep learning", Comput. Struct., 266, 106790. https://doi.org/10.1016/j.compstruc.2022.106790
  36. Wang, S.M., Jiang, G.F., Ni, Y.Q., Lu, Y., Lin, G.B., Pan, H.L., Xu, J.Q. and Hao, S. (2022), "Multiple damage detection of maglev rail joints using time-frequency spectrogram and convolutional neural network", Smart Struct. Syst., Int. J., 29(4), 625-640. https://doi.org/10.12989/sss.2022.29.4.625
  37. Yan, A.M., Kerschen, G., De Boe, P. and Golinval, J.C. (2005), "Structural damage diagnosis under varying environmental conditions-Part I: A linear analysis", Mech. Syst. Signal Process., 19(4), 847-864. https://doi.org/10.1016/j.ymssp.2004.12.002
  38. Zhang, G., Tang, L., Liu, Z., Zhou, L., Liu, Y., Jiang, Z., Chen, J. and Sun, S. (2021), "Enhanced features in principal component analysis with spatial and temporal windows for damage identification", Inverse Probl. Sci. Eng., 29(13), 2877-2894. https://doi.org/10.1080/17415977.2021.1954921