• Title/Summary/Keyword: environmental and operational variability

Search Result 13, Processing Time 0.027 seconds

Real-time online damage localisation using vibration measurements of structures under variable environmental conditions

  • K. Lakshmi
    • Smart Structures and Systems
    • /
    • v.33 no.3
    • /
    • pp.227-241
    • /
    • 2024
  • Safety and structural integrity of civil structures, like bridges and buildings, can be substantially enhanced by employing appropriate structural health monitoring (SHM) techniques for timely diagnosis of incipient damages. The information gathered from health monitoring of important infrastructure helps in making informed decisions on their maintenance. This ensures smooth, uninterrupted operation of the civil infrastructure and also cuts down the overall maintenance cost. With an early warning system, SHM can protect human life during major structural failures. A real-time online damage localization technique is proposed using only the vibration measurements in this paper. The concept of the 'Degree of Scatter' (DoS) of the vibration measurements is used to generate a spatial profile, and fractal dimension theory is used for damage detection and localization in the proposed two-phase algorithm. Further, it ensures robustness against environmental and operational variability (EoV). The proposed method works only with output-only responses and does not require correlated finite element models. Investigations are carried out to test the presented algorithm, using the synthetic data generated from a simply supported beam, a 25-storey shear building model, and also experimental data obtained from the lab-level experiments on a steel I-beam and a ten-storey framed structure. The investigations suggest that the proposed damage localization algorithm is capable of isolating the influence of the confounding factors associated with EoV while detecting and localizing damage even with noisy measurements.

Examination of experimental errors in Scanlan derivatives of a closed-box bridge deck

  • Rizzo, Fabio;Caracoglia, Luca
    • Wind and Structures
    • /
    • v.26 no.4
    • /
    • pp.231-251
    • /
    • 2018
  • The objective of the investigation is the analysis of wind-tunnel experimental errors, associated with the measurement of aeroelastic coefficients of bridge decks (Scanlan flutter derivatives). A two-degree-of-freedom experimental apparatus is used for the measurement of flutter derivatives. A section model of a closed-box bridge deck is considered in this investigation. Identification is based on free-vibration aeroelastic tests and the Iterative Least Squares method. Experimental error investigation is carried out by repeating the measurements and acquisitions thirty times for each wind tunnel speed and configuration of the model. This operational procedure is proposed for analyzing the experimental variability of flutter derivatives. Several statistical quantities are examined; these quantities include the standard deviation and the empirical probability density function of the flutter derivatives at each wind speed. Moreover, the critical flutter speed of the setup is evaluated according to standard flutter theory by accounting for experimental variability. Since the probability distribution of flutter derivatives and critical flutter speed does not seem to obey a standard theoretical model, polynomial chaos expansion is proposed and used to represent the experimental variability.

Temporal variability of Evapotranspiration simulated by different models at the croplands

  • Choi, Min-Ha;Lee, Jin-Woo;Kim, Tae-Woong;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.535-539
    • /
    • 2009
  • Evapotranspiration (ET) is one of the main factor to understand the hydrologic cycle on land surfaces of entire globe. It accounts for about 65% of precipitation returning to the atmosphere. Accurate estimation of the ET is essential to many applications of water resources management, hydrology, meteorology, climatology, and agriculture. Over the past few decades, there have been extensive efforts to develop and validate a number of ET models. Priestley-Taylor (P-T) and Food and Agriculture Organization Penman-Monteith (P-M) models are generally recognized as simple, but great operational approaches to estimate ET over different land cover types. In this study, we compare/validate different models of increasing complexity, P-T, P-M, and Common Land Model (CLM) in croplands, IA.

  • PDF

Evaluation of Sea Surface Temperature Prediction Skill around the Korean Peninsula in GloSea5 Hindcast: Improvement with Bias Correction (GloSea5 모형의 한반도 인근 해수면 온도 예측성 평가: 편차 보정에 따른 개선)

  • Gang, Dong-Woo;Cho, Hyeong-Oh;Son, Seok-Woo;Lee, Johan;Hyun, Yu-Kyung;Boo, Kyung-On
    • Atmosphere
    • /
    • v.31 no.2
    • /
    • pp.215-227
    • /
    • 2021
  • The necessity of the prediction on the Seasonal-to-Subseasonal (S2S) timescale continues to rise. It led a series of studies on the S2S prediction models, including the Global Seasonal Forecasting System Version 5 (GloSea5) of the Korea Meteorological Administration. By extending previous studies, the present study documents sea surface temperature (SST) prediction skill around the Korean peninsula in the GloSea5 hindcast over the period of 1991~2010. The overall SST prediction skill is about a week except for the regions where SST is not well captured at the initialized date. This limited prediction skill is partly due to the model mean biases which vary substantially from season to season. When such biases are systematically removed on daily and seasonal time scales the SST prediction skill is improved to 15 days. This improvement is mostly due to the reduced error associated with internal SST variability during model integrations. This result suggests that SST around the Korean peninsula can be reliably predicted with appropriate post-processing.

Hydro-meteorological Effects on Water Quality Variability in Paldang Reservoir, Confluent Area of the South-Han River-North-Han River-Gyeongan Stream, Korea (남·북한강과 경안천 합류 수역 팔당호의 수질 변동성에 대한 기상·수문학적 영향)

  • Hwang, Soon-Jin;Kim, Keonhee;Park, Chaehong;Seo, Wanbum;Choi, Bong-Geun;Eum, Hyun Soo;Park, Myung-Hwan;Noh, Hye Ran;Sim, Yeon Bo;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.354-374
    • /
    • 2016
  • This study explored spatiotemporal variability of water quality in correspondence with hydrometeorological factors in the five stations of Paldang Reservoir located in the Han River during 4 years from May 2012 to December 2015. Variability of basic water quality factors were largely related with seasonal fluctuations of hydrology. Temperature stratification occurred in the deep dam station, and prolonged hypoxia was observed during the draught year. Nitrogen nutrients were increased with decreasing inflow in which changing pattern of $NH_4$ reversed to $NO_3$ by the effect of treated wastewater effluent. Phosphorus increase was manifest during the period of high inflow or severe drought. Chl-a variation was reversely related with both flow change and AGP(algal growth potential) variations. Our study demonstrated that water quality variability in Paldang Reservoir was largely attributed to both natural and operational changes of inflow and outflow (including water intake) based on major pollution source of the treated wastewater (total amount of $472{\times}10^3m^3d^{-1}$) entering to the water system from watershed. In the process of water quality variability, meteorological (e.g., flood, typhoon, abnormal rainfall, scorching heat of summer) and hydrological factors (inflow and discharge) were likely to work dynamically with nutrients pulse, dilution, absorption, concentration and sedimentation. We underline comprehensive limnological study related to hydro-meteorolology to understand short- and long-term water quality variability in river-type large reservoir and suggest the necessity of P-free wastewater treatment for the effective measure of reducing pollution level of Paldang drinking water resource.

Perturbation analysis for robust damage detection with application to multifunctional aircraft structures

  • Hajrya, Rafik;Mechbal, Nazih
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.435-457
    • /
    • 2015
  • The most widely known form of multifunctional aircraft structure is smart structures for structural health monitoring (SHM). The aim is to provide automated systems whose purposes are to identify and to characterize possible damage within structures by using a network of actuators and sensors. Unfortunately, environmental and operational variability render many of the proposed damage detection methods difficult to successfully be applied. In this paper, an original robust damage detection approach using output-only vibration data is proposed. It is based on independent component analysis and matrix perturbation analysis, where an analytical threshold is proposed to get rid of statistical assumptions usually performed in damage detection approach. The effectiveness of the proposed SHM method is demonstrated numerically using finite element simulations and experimentally through a conformal load-bearing antenna structure and composite plates instrumented with piezoelectric ceramic materials.

Unsupervised one-class classification for condition assessment of bridge cables using Bayesian factor analysis

  • Wang, Xiaoyou;Li, Lingfang;Tian, Wei;Du, Yao;Hou, Rongrong;Xia, Yong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.41-51
    • /
    • 2022
  • Cables are critical components of cable-stayed bridges. A structural health monitoring system provides real-time cable tension recording for cable health monitoring. However, the measurement data involve multiple sources of variability, i.e., varying environmental and operational factors, which increase the complexity of cable condition monitoring. In this study, a one-class classification method is developed for cable condition assessment using Bayesian factor analysis (FA). The single-peaked vehicle-induced cable tension is assumed to be relevant to vehicle positions and weights. The Bayesian FA is adopted to establish the correlation model between cable tensions and vehicles. Vehicle weights are assumed to be latent variables and the influences of different transverse positions are quantified by coefficient parameters. The Bayesian theorem is employed to estimate the parameters and variables automatically, and the damage index is defined on the basis of the well-trained model. The proposed method is applied to one cable-stayed bridge for cable damage detection. Significant deviations of the damage indices of Cable SJS11 were observed, indicating a damaged condition in 2011. This study develops a novel method to evaluate the health condition of individual cable using the FA in the Bayesian framework. Only vehicle-induced cable tensions are used and there is no need to monitor the vehicles. The entire process, including the data pre-processing, model training and damage index calculation of one cable, takes only 35 s, which is highly efficient.

Vibration-based structural health monitoring using large sensor networks

  • Deraemaeker, A.;Preumont, A.;Reynders, E.;De Roeck, G.;Kullaa, J.;Lamsa, V.;Worden, K.;Manson, G.;Barthorpe, R.;Papatheou, E.;Kudela, P.;Malinowski, P.;Ostachowicz, W.;Wandowski, T.
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.335-347
    • /
    • 2010
  • Recent advances in hardware and instrumentation technology have allowed the possibility of deploying very large sensor arrays on structures. Exploiting the huge amount of data that can result in order to perform vibration-based structural health monitoring (SHM) is not a trivial task and requires research into a number of specific problems. In terms of pressing problems of interest, this paper discusses: the design and optimisation of appropriate sensor networks, efficient data reduction techniques, efficient and automated feature extraction methods, reliable methods to deal with environmental and operational variability, efficient training of machine learning techniques and multi-scale approaches for dealing with very local damage. The paper is a result of the ESF-S3T Eurocores project "Smart Sensing For Structural Health Monitoring" (S3HM) in which a consortium of academic partners from across Europe are attempting to address issues in the design of automated vibration-based SHM systems for structures.

Aviation Convective Index for Deep Convective Area using the Global Unified Model of the Korean Meteorological Administration, Korea: Part 2. Seasonal Optimization and Case Studies (안전한 항공기 운항을 위한 현업 전지구예보모델 기반 깊은 대류 예측 지수: Part 2. 계절별 최적화 및 사례 분석)

  • Yi-June Park;Jung-Hoon Kim
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.531-548
    • /
    • 2023
  • We developed the Aviation Convective Index (ACI) for predicting deep convective area using the operational global Numerical Weather Prediction model of the Korea Meteorological Administration. Seasonally optimized ACI (ACISnOpt) was developed to consider seasonal variabilities on deep convections in Korea. Yearly optimized ACI (ACIYrOpt) in Part 1 showed that seasonally averaged values of Area Under the ROC Curve (AUC) and True Skill Statistics (TSS) were decreased by 0.420% and 5.797%, respectively, due to the significant degradation in winter season. In Part 2, we developed new membership function (MF) and weight combination of input variables in the ACI algorithm, which were optimized in each season. Finally, the seasonally optimized ACI (ACISnOpt) showed better performance skills with the significant improvements in AUC and TSS by 0.983% and 25.641% respectively, compared with those from the ACIYrOpt. To confirm the improvements in new algorithm, we also conducted two case studies in winter and spring with observed Convectively-Induced Turbulence (CIT) events from the aircraft data. In these cases, the ACISnOpt predicted a better spatial distribution and intensity of deep convection. Enhancements in the forecast fields from the ACIYrOpt to ACISnOpt in the selected cases explained well the changes in overall performance skills of the probability of detection for both "yes" and "no" occurrences of deep convection during 1-yr period of the data. These results imply that the ACI forecast should be optimized seasonally to take into account the variabilities in the background conditions for deep convections in Korea.

Prediction Skill of GloSea5 model for Stratospheric Polar Vortex Intensification Events (성층권 극소용돌이 강화사례에 대한 GloSea5의 예측성 진단)

  • Kim, Hera;Son, Seok-Woo;Song, Kanghyun;Kim, Sang-Wook;Kang, Hyun-Suk;Hyun, Yu-Kyung
    • Journal of the Korean earth science society
    • /
    • v.39 no.3
    • /
    • pp.211-227
    • /
    • 2018
  • This study evaluates the prediction skills of stratospheric polar vortex intensification events (VIEs) in Global Seasonal Forecasting System (GloSea5) model, an operational subseasonal-to-seasonal (S2S) prediction model of Korea Meteorological Administration (KMA). The results show that the prediction limits of VIEs, diagnosed with anomaly correlation coefficient (ACC) and mean squared skill score (MSSS), are 13.6 days and 18.5 days, respectively. These prediction limits are mainly determined by the eddy error, especially the large-scale eddy phase error from the eddies with the zonal wavenumber 1. This might imply that better prediction skills for VIEs can be obtained by improving the model performance in simulating the phase of planetary scale eddy. The stratospheric prediction skills, on the other hand, tend to not affect the tropospheric prediction skills in the analyzed cases. This result may indicate that stratosphere-troposphere dynamic coupling associated with VIEs might not be well predicted by GloSea5 model. However, it is possible that the coupling process, even if well predicted by the model, cannot be recognized by monotonic analyses, because intrinsic modes in the troposphere often have larger variability compared to the stratospheric impact.