Acknowledgement
The research work reported in this paper is part of the mission mode project, HCP0018, funded by the Council of Scientific and Industrial Research (CSIR), India, during 2018-20. The authors gratefully acknowledge the support of the technical staff of SHM lab, CSIR-SERC, during the experimental work.
References
- An, Y., Chatzi, E., Sim, S.H., Laflamme, S., Blachowski, B. and Ou, J. (2019), "Recent progress and future trends on damage identification methods for bridge structures", Struct. Control Health Monitor., 26(10), e2416. https://doi.org/10.1002/stc.2416
- Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M. and Inman, D.J. (2021), "A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications", Mech. Syst. Signal Process., 147, 107077. https://doi.org/10.1016/j.ymssp.2020.107077
- Bernagozzi, G., Achilli, A., Betti, R., Diotallevi, P.P., Landi, L., Quqa, S. and Tronci, E.M. (2021), "On the use of multivariate autoregressive models for vibration-based damage detection and localization", Smart Struct. Syst., Int. J., 27(2), 335-350. https://doi.org/10.12989/sss.2021.27.2.335
- Beygzadeh, S., Torkzadeh, P. and Salajegheh, E. (2022), "Two-stage structural damage detection method using dynamic responses based on Kalman filter and particle swarm optimization", Struct. Eng. Mech., Int. J., 83(5), 593-607. https://doi.org/10.12989/sem.2022.83.5.593
- Cao, S., Guo, N. and Xu, C. (2022), "Robust damage localization in plate-type structures by using an enhanced robust principal component analysis and data fusion technique", Mech. Syst. Signal Process., 162, 108091. https://doi.org/10.1016/j.ymssp.2021.108091
- Chegeni, M.H., Sharbatdar, M.K., Mahjoub, R. and Raftari, M. (2022), "New supervised learning classifiers for structural damage diagnosis using time series features from a new feature extraction technique", Earthq. Eng. Eng. Vib., 21(1), 169-191. https://doi.org/10.1007/s11803-022-2079-2
- Das, S. and Roy, K. (2022), "A state-of-the-art review on FRF-based structural damage detection: Development in last two decades and way forward", Int. J. Struct. Stabil. Dyn., 22(02), 2230001.https://doi.org/10.1142/S0219455422300014
- Do, N.T. and Gul, M. (2020), "A time series based damage detection method for obtaining separate mass and stiffness damage features of shear-type structures", Eng. Struct., 208, 109914. https://doi.org/10.1016/j.engstruct.2019.109914
- Entezami, A., Shariatmadar, H. and Mariani, S. (2020), "Early damage assessment in large-scale structures by innovative statistical pattern recognition methods based on time series modeling and novelty detection", Adv. Eng. Software, 150, 102923. https://doi.org/10.1016/j.advengsoft.2020.102923
- Esteller, R., Vachtsevanos, G., Echauz, J. and Lilt, B. (1999), "A comparison of fractal dimension algorithms using synthetic and experimental data", In: 1999 IEEE International Symposium on Circuits and Systems (ISCAS), Vol. 3, pp. 199-202. https://doi.org/10.1109/ISCAS.1999.778819
- Guo, T., Zhang, M., Zhu, R., Zong, Y. and Pan, Z. (2022), "Vibration-based structural health monitoring using CAE-aided unsupervised deep learning", Smart Struct. Syst., Int. J., 30(6), 557-569. https://doi.org/10.12989/sss.2022.30.6.557
- Hao, J., Zhu, X., Yu, Y., Zhang, C. and Li, J. (2022), "Damage localization and quantification of a truss bridge using PCA and convolutional neural network", Smart Struct. Syst., Int. J., 30(6), 673-686. https://doi.org/10.12989/sss.2022.30.6.673
- Higuchi, T. (1988), "Approach to an irregular time series on the basis of the fractal theory", Physica D: Nonlinear Phenom., 31(2), 277-283. https://doi.org/10.1016/0167-2789(88)90081-4
- Huang, J.Z., Li, D.S. and Li, H.N. (2023), "A new regime-switching cointegration method for structural health monitoring under changing environmental and operational conditions", Measurement, 212, 112682. https://doi.org/10.1016/j.measurement.2023.112682
- Katunin, A., dos Santos, J.V.A. and Lopes, H. (2021), "Damage identification by wavelet analysis of modal rotation differences", Structures, 30, 1-10. https://doi.org/10.1016/j.istruc.2021.01.010
- Katz, M.J. (1988), "Fractals and the analysis of waveforms", Comput. Biol. Med., 18(3), 145-156. https://doi.org/10.1016/0010-4825(88)90041-8
- Krishansamy, L. and Arumulla, R.M.R. (2019), "Multi constrained optimization combining ARMAX with differential search for damage assessment", Struct. Eng. Mech., Int. J., 72(6), 689-712.https://doi.org/10.12989/.2019.72.6.689
- Kumar, K., Biswas, P.K. and Dhang, N. (2020), "Time series-based SHM using PCA with application to ASCE benchmark structure", J. Civil Struct. Health Monitor., 10, 899-911. https://doi.org/10.1007/s13349-020-00423-2
- Lakshmi, K. (2020), "A multi-model based approach for the detection of subtle structural damage considering environmental variability", Int. J. Struct. Stabil. Dyn., 20(03), 2050038. https://doi.org/10.1142/S0219455420500388
- Lakshmi, K. (2021), "Detection and quantification of damage in bridges using a hybrid algorithm with spatial filters under environmental and operational variability", Structures, 32, 617-631. https://doi.org/10.1016/j.istruc.2021.03.031
- Lakshmi, K. and Rama Mohan Rao, A. (2018a), "A hybrid structural health monitoring technique for detection of subtle structural damage", Smart Struct. Syst., Int. J., 22(5), 587-609. https://doi.org/10.12989/sss.2018.22.5.587
- Lakshmi, K. and Rama Mohan Rao, A. (2018b), "Output-only damage localization technique using time series model", Sadhana, 43, 1-17. https://doi.org/10.1007/s12046-018-0912-0
- Lakshmi, K. and Rama Mohan Rao, A. (2019), "Baseline-free hybrid diagnostic technique for detection of minor incipient damage in the structure", J. Perform. Constr. Facil., 33(2), 04019018. https://doi.org/10.1061/(ASCE)CF.1943-5509.00012
- Li, H., Huang, Y., Ou, J. and Bao, Y. (2011), "Fractal dimension-based damage detection method for beams with a uniform cross-section", Comput.-Aided Civil Infrastr. Eng., 26(3), 190-206. https://doi.org/10.1111/j.1467-8667.2010.00686.x
- Liu, W., Rui, E., Yuan, L., Chen, S.Y., Zheng, Y. and Ni, Y.Q. (2023), "A novel computer vision-based vibration measurement and coarse-to-fine damage assessment method for truss bridges", Smart Struct. Syst., Int. J., 31(4), 393-407. https://doi.org/10.12989/sss.2023.31.4.393
- Nguyen-Ngoc, L., Tran, N. H., Bui-Tien, T., Mai-Duc, A., Abdel Wahab, M., X Nguyen, H. and De Roeck, G. (2021), "Damage detection in structures using particle swarm optimization combined with artificial neural network", Smart Struct. Syst., Int. J., 28(1), 1-12. https://doi.org/10.12989/sss.2021.28.1.001
- Normant, F. and Tricot, C. (1991), "Method for evaluating the fractal dimension of curves using convex hulls", Phys. Review A, 43(12), 6518. https://doi.org/10.1103/PhysRevA.43.6518
- Paramanathan, P. and Uthayakumar, R. (2008), "An algorithm for computing the fractal dimension of waveforms", Appl. Mathe. Computat., 195(2), 598-603. https://doi.org/10.1016/j.amc.2007.05.011
- Rama Mohan Rao, A. and Lakshmi, K. (2015), "Damage diagnostic technique combining POD with time-frequency analysis and dynamic quantum PSO", Meccanica, 50, 1551-1578. https://doi.org/10.1007/s11012-015-0106-3
- Rao, A.R.M. and Anandakumar, G. (2007), "Optimal placement of sensors for structural system identification and health monitoring using a hybrid swarm intelligence technique", Smart Mater. Struct., 16(6), 2658. https://doi.org/10.1088/0964-1726/16/6/071
- Rao, A.R.M., Lakshmi, K. and Kumar, S.K. (2015), "Detection of delamination in laminated composites with limited measurements combining PCA and dynamic QPSO", Adv. Eng. Software, 86, 85-106. https://doi.org/10.1016/j.advengsoft.2015.04.005
- Sanchez, W.D., de Brito, J.V. and Avila, S.M. (2020), "Structural health monitoring using synchrosqueezed wavelet transform on IASC-ASCE benchmark phase I", Int. J. Struct. Stabil. Dyn., 20(12), 2050138. https://doi.org/10.1142/S0219455420501382
- Sarmadi, H., Entezami, A., Salar, M. and De Michele, C. (2021), "Bridge health monitoring in environmental variability by new clustering and threshold estimation methods", J. Civil Struct. Health Monitor., 11, 629-644. https://doi.org/10.1007/s13349-021-00472-1
- Shallan, O. and Hamdy, O. (2022), "Quantification and location damage detection of plane and space truss using residual force method and teaching-learning based optimization algorithm", Struct. Eng. Mech., Int. J., 81(2), 195-203. https://doi.org/10.12989/sem.2022.81.2.195
- Torzoni, M., Rosafalco, L., Manzoni, A., Mariani, S. and Corigliano, A. (2022), "SHM under varying environmental conditions: An approach based on model order reduction and deep learning", Comput. Struct., 266, 106790. https://doi.org/10.1016/j.compstruc.2022.106790
- Wang, S.M., Jiang, G.F., Ni, Y.Q., Lu, Y., Lin, G.B., Pan, H.L., Xu, J.Q. and Hao, S. (2022), "Multiple damage detection of maglev rail joints using time-frequency spectrogram and convolutional neural network", Smart Struct. Syst., Int. J., 29(4), 625-640. https://doi.org/10.12989/sss.2022.29.4.625
- Yan, A.M., Kerschen, G., De Boe, P. and Golinval, J.C. (2005), "Structural damage diagnosis under varying environmental conditions-Part I: A linear analysis", Mech. Syst. Signal Process., 19(4), 847-864. https://doi.org/10.1016/j.ymssp.2004.12.002
- Zhang, G., Tang, L., Liu, Z., Zhou, L., Liu, Y., Jiang, Z., Chen, J. and Sun, S. (2021), "Enhanced features in principal component analysis with spatial and temporal windows for damage identification", Inverse Probl. Sci. Eng., 29(13), 2877-2894. https://doi.org/10.1080/17415977.2021.1954921