DOI QR코드

DOI QR Code

Probabilistic seismic risk assessment of a masonry tower considering local site effects

  • Ozden Saygili (Civil Engineering Department, Yeditepe University)
  • Received : 2022.06.27
  • Accepted : 2024.01.24
  • Published : 2024.03.25

Abstract

A comprehensive probabilistic seismic hazard analysis was carried out in Istanbul to examine the seismotectonic features of the region. The results showed that earthquakes can trigger one another, resulting in the grouping of earthquakes in both time and space. The hazard analysis utilized the Poisson model and a conventional integration technique to generate the hazard curve, which shows the likelihood of ground motion surpassing specific values over a given period. Additionally, the study evaluated the impact of seismic hazard on the structural integrity of an existing masonry tower by simulating its seismic response under different ground motion intensities. The study's results emphasize the importance of considering the seismotectonic characteristics of an area when assessing seismic hazard and the structural performance of buildings in seismic-prone regions.

Keywords

References

  1. Acun, H. (1994), Anatolian Clock Tower, Ankara, Turkiye.
  2. Aki, K. (1965), "A note on the use of microseisms in determining the shallow structures of the earth's crust", Geophys., 30(4), 665-666. https://doi.org/10.1190/1.1439640.
  3. Aleksandrova, I., Solakov D., Simeonova, S. and Raykova, P. (2019), "Empirical relations converting seismic intensity to moment magnitude", 10th Congress of the Balkan Geophysical Society, Albena, Bulgaria, September.
  4. Ambraseys, N. and Finkel, C. (1987), "The Saros-Marmara earthquake of 9 August 1912", Earthq. Eng. Struct. Dyn., 15(2), 189-211. https://doi.org/10.1002/eqe.4290150204.
  5. Ambraseys, N. and Finkel C. (1991), "Long-term seismicity of Istanbul and the Marmara Sea region", Terra Nova, 3(5), 527-539. https://doi.org/10.1111/j.1365-3121.1991.tb00188.x.
  6. Ambraseys, N. and Jackson, J.A. (2002), "Seismicity of the Sea of Marmara (Turkey) since 1500", Geophys. J. Int., 141, F1-F6. https://doi.org/10.1046/j.1365-246x.2000.00137.x.
  7. AFAD (2020), Turkey Earthquake Hazard Maps Interactive Web Application; Disaster and Emergency Management Authority Presidential of Earthquake Department, Ankara, Turkiye. https://tdth.afad.gov.tr/
  8. Bogazici universitesi (2021), Kandilli Rasathanesi BDTIM, Bogazici Universitesi, Istanbul, Turkiye.
  9. Bohnhoff, M., Martinez-Garzon, P., Bulut, F., Stierle E. and Ben-Zion, Y. (2016), "Maximum earthquake magnitudes along different sections of the North Anatolian fault zone", Tectonophys., 674, 147-165. https://doi.org/10.1016/j.tecto.2016.02.028.
  10. Cakti, E., Saygili, O., Lemos, J.V. and Oliveira, C.S. (2016), "Discrete element modeling of a scaled masonry structure and its validation", Eng. Struct., 126, 224-236. https://doi.org/10.1016/j.engstruct.2016.07.044.
  11. Cakti, E., Saygili, O., Lemos, J.V. and Oliveira, C.S. (2020), "Nonlinear dynamic response of stone masonry minarets under harmonic excitation", Bull. Earthq. Eng., 18, 4813-4838. https://doi.org/10.1007/s10518-020-00888-y.
  12. Cornell, C.A. (1968), "Engineering seismic risk analysis", Bull. Seismol. Soc. Am., 58(5), 1583-1606. https://doi.org/10.1785/bssa0580051583.
  13. Field, E.H., Jordan, T.H. and Cornell, C.A. (2003), "OpenSHA - A developing community-modeling environment for seismic hazard analysis", Seismol. Res. Lett., 74(4), 406-419. https://doi.org/10.1785/gssrl.74.4.406.
  14. Gardner, J.K. and Knopoff, L. (1974), "Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?", Bull. Seismol. Soc. Am., 64(5), 1363-1367. https://doi.org/10.1785/bssa0640051363.
  15. Hubert-Ferrari, A., Barka, A., Jacques, E., Nalbant, S., Meyer, B., Armijo, R., Tapponnier, P. and King, G. (2000), "Seismic hazard in the Marmara Sea region following the 17 August 1999 Izmit earthquake", Nat., 404(6775), 269-273. https://doi.org/10.1038/35005054.
  16. Itasca (2016), 3DEC-Three-Dimensional Distinct Element Code Version 5.2, Minneapolis, MN, USA.
  17. JICA (2002), The Study on a Disaster Prevention/Mitigation Basic Plan in Istanbul Including Seismic Microzonation in the Republic of Turkey, Pacific Consultants International, OYO Corporation, Istanbul, Turkiye.
  18. Kadirioglu, F.T. and Kartal, R.F. (2016), "The new empirical magnitude conversion relations using an improved earthquake catalogue for Turkey and its near vicinity (1900-2012)", Turk. J. Earth Sci., 25(4), 300-310. https://doi.org/10.3906/yer-1511-7.
  19. McGuire, K.K. (1976), "Fortran computer program for seismic risk analysis", Open-File report 76-67; United States Department of the Interior, Geological Survey, Reston, VA, USA.
  20. Ozturk, S. (2014), "A new empirical relation between surface wave magnitude and rupture length for Turkey earthquakes", Earth Sci. Res. J., 18(1), 15-26. https://doi.org/10.15446/esrj.v18n1.36910.
  21. Parisse, F., Cattari, S., Marques R., Lourenco, P.B., Magenes, G., Beyer, K. and Sousamli, M. (2021), "Benchmarking the seismic assessment of unreinforced masonry buildings from a blind prediction test", Struct., 31, 982-1005. https://doi.org/10.1016/j.istruc.2021.01.096.
  22. Parsons, T. (2004), "Recalculated probability of M7 earthquakes beneath the Sea of Marmara, Turkey", J. Geophys. Res. Solid Earth, 109(B5), 1. https://doi.org/10.1029/2003jb002667.
  23. Polat, G. and Saygili, O. (2020), "Structural evaluation for the preservation of an ancient Egyptian Obelisk in Istanbul, Turkey", Yerbilimleri, 41(2), 169-182. https://doi.org/10.17824/yerbilimleri.630560.
  24. Sarhosis V., Baraldi, D., Lemos, J.V. and Milani, J.G. (2019), "Dynamic behaviour of ancient freestanding multi-drum and monolithic columns subjected to horizontal and vertical excitations", Soil Dyn. Earthq. Eng., 120, 39-57. https://doi.org/10.1016/j.soildyn.2019.01.024.
  25. Saygili, O. (2019), "Estimation of structural dynamic characteristics of the Egyptian Obelisk of Theodosius", Earthq. Struct., 16(3), 311-320. https://doi.org/10.12989/eas.2019.16.3.311.
  26. Saygili, O. (2020a), "Investigation of the effect of slenderness ratio on the structural response of masonry minarets", Omer Halisdemir Univ. J. Eng. Sci., 9(1), 366-376. https://doi.org/10.28948/ngumuh.562351.
  27. Saygili, O. (2020b), "Seismic performance evaluation of a masonry building subjected to near and far field ground motion", Civil Eng. J., 2020(3), 1-14. https://doi.org/10.14311/cej.2020.03.0025
  28. Saygili, O. and Lemos, J.V. (2021), "Seismic vulnerability assessment of masonry arch bridges", Struct., 33, 3311-3323. https://doi.org/10.1016/j.istruc.2021.06.057.
  29. Saygili, O., Lemos, J.V. and Moghimi, S. (2023), "Site specific hazard assessment and multi-level seismic performance evaluation of historical mosque", Int. J. Arch. Herit., 2023, 1-21. https://doi.org/10.1080/15583058.2023.2216175.
  30. Saygili, O. and Polat, G. (2021), "Analysis of seismic parameters for the earthquake vulnerability assessment of Nusretiye (Tophane) Clock Tower", Lat. Am. J. Solid. Struct., 2021, 18. https://doi.org/10.1590/0001-3765202220210487.
  31. Saygili, O. and Lemos, J.V. (2020), "Investigation of the structural dynamic behavior of the frontinus gate", Appl. Sci., 10(17), 5821. https://doi.org/10.3390/app10175821.
  32. Saygili, O. and Lemos, J.V. (2021), "Seismic vulnerability assessment of masonry arch bridges", Struct., 33, 3311-3323. https://doi.org/10.1016/j.istruc.2021.06.057.
  33. Saygili, O. and Polat, G. (2022), "Seismic hazard's influences for cultural heritage sites: Roman city of Hierapolis", Annal. Braz. Acad. Sci., 94(2), e20210487. https://doi.org/10.1590/0001-3765202220210487.
  34. Tan, O., Tapirdamaz M.C. and Yoruk, A. (2008), "The earthquake catalogues for Turkey", Turk. J. Earth Sci., 17(2), 405-418.
  35. Tan, O. (2021), "A homogeneous earthquake catalogue for Turkey", Nat. Hazard. Earth Syst. Sci., 21, 2059-2073. https://doi.org/10.5194/nhess-21-2059-2021.
  36. Wells, D.L. and Coppersmith, K.J., (1994), "New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement", Bull. Seismol. Soc. Am., 84(4), 974-1002. https://doi.org/10.1785/BSSA0840040974.
  37. Wiemer, S. (2001), "A software package to analyze seismicity: ZMAP", Seismol. Res. Lett. 72(3), 373-382. https://doi.org/10.1785/gssrl.72.3.373.
  38. Wollin, C., Bohnhoff, M. and Vavrycuk, V. (2019), "Stress inversion of regional seismicity in the Sea of Marmara Region, Turkey", Pure Appl. Geophys., 176(3), 1269-1291. https://doi.org/10.1007/s00024-018-1971-1.