Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2021R1C1C2008770), and the authors would like to thank the organizers of the 1st International Project Competition for SHM (IPC-SHM, 2020) for providing the invaluable data used in this paper.
References
- Abdi, H. and Williams, L.J. (2010), "Principal component analysis", Wiley Interdiscipl. Reviews: Computat. Statist., 2(4), 433-459. https://doi.org/10.1002/wics.101
- Altin, C. and Er, O. (2016), "Comparison of different time and frequency domain feature extraction methods on elbow gesture's EMG", Eur. J. Interdiscipl. Stud., 2(3), 35-44. https://doi.org/10.26417/ejis.v2i3.p35-44
- Ansari, F. (2007), "Practical implementation of optical fiber sensors in civil structural health monitoring", J. Intell. Mater. Syst. Struct., 18(8), 879-889. https://doi.org/10.1177/1045389X06075760
- Arangio, S. and Bontempi, F. (2015), "Structural health monitoring of a cable-stayed bridge with Bayesian neural networks", Struct. Infrastr. Eng., 11(4), 575-587. https://doi.org/10.1080/15732479.2014.951867
- Arul, M. and Kareem, A. (2022), "Data anomaly detection for structural health monitoring of bridges using shapelet transform", Smart Struct. Syst., Int. J., 29(1), 93-103. https://doi.org/10.12989/sss.2022.29.1.093
- Bakar, Z.A., Mohemad, R., Ahmad, A. and Deris, M.M. (2006), "A comparative study for outlier detection techniques in data mining", In: 2006 IEEE Conference on Cybernetics and Intelligent Systems, Bangkok, Thailand, June.
- Bao, Y., Tang, Z., Li, H. and Zhang, Y. (2019), "Computer vision and deep learning-based data anomaly detection method for structural health monitoring", Struct. Health Monitor., 18(2), 401-421. https://doi.org/10.1177/1475921718757405
- Bao, Y., Li, J., Nagayama, T., Xu, Y., Spencer Jr, B.F. and Li, H. (2021), "The 1st International Project Competition for Structural Health Monitoring (IPC-SHM, 2020): A summary and benchmark problem", Struct. Health Monitor., 20(4), 2229-2239. https://doi.org/10.1177/14759217211006485
- Chang, C., Chou, J., Tan, P. and Wang, L. (2017), "A sensor fault detection strategy for structural health monitoring systems", Smart Struct. Syst., Int. J., 20(1), 43-52. https://doi.org/10.12989/sss.2017.20.1.043
- Chou, J.-Y., Fu, Y., Huang, S.-K. and Chang, C.-M. (2022), "SHM data anomaly classification using machine learning strategies: A comparative study", Smart Struct. Syst., Int. J., 29(1), 77-91. https://doi.org/10.12989/sss.2022.29.1.077
- Du, Y., Li, L., Hou, R., Wang, X., Tian, W. and Xia, Y. (2022), "Convolutional neural network-based data anomaly detection considering class imbalance with limited data", Smart Struct. Syst., Int. J., 29(1), 63-75. https://doi.org/10.12989/sss.2022.29.1.063
- Fleming, J.F. and Egeseli, E.A. (1980), "Dynamic behaviour of a cable-stayed bridge", Earthq. Eng. Struct. Dyn., 8(1), 1-16. https://doi.org/10.1002/eqe.4290080102
- Fu, Y., Peng, C., Gomez, F., Narazaki, Y. and Spencer Jr., B. (2019), "Sensor fault management techniques for wireless smart sensor networks in structural health monitoring", Struct. Control Health Monitor., 26, e2362. https://doi.org/10.1002/stc.2362
- Gao, K., Chen, Z.-D., Weng, S., Zhu, H.-P. and Wu, L.-Y. (2022), "Detection of multi-type data anomaly for structural health monitoring using pattern recognition neural network", Smart Struct. Syst., Int. J., 29(1), 129-140. https://doi.org/10.12989/sss.2022.29.1.129
- Khalid, S., Khalil, T. and Nasreen, S. (2014), "A survey of feature selection and feature extraction techniques in machine learning", In: 2014 Science and Information Conference, London, UK, October. https://doi.org/10.1109/SAI.2014.6918213
- Kullaa, J. (2011), "Distinguishing between sensor fault, structural damage, and environmental or operational effects in structural health monitoring", Mech. Syst. Signal Process., 25(8), 2976-2989. https://doi.org/10.1016/j.ymssp.2011.05.017
- Kullaa, J. (2013), "Detection, identification, and quantification of sensor fault in a sensor network", Mech. Syst. Signal Process., 40(1), 208-221. https://doi.org/10.1016/j.ymssp.2013.05.007
- Kung, S.Y. and Diamantaras, K.I. (1990), "A neural network learning algorithm for adaptive principal component extraction (APEX)", In: International Conference on Acoustics, Speech, and Signal Processing, Albuquerque, NM, USA, August.
- Lee, J., Lee, K.-C., Cho, S. and Sim, S.H. (2017), "Computer vision-based structural displacement measurement robust to light-induced image degradation for in-service bridges", Sensors, 17(10), 2317. https://doi.org/10.3390/s17102317
- Lee, J., Lee, K.-C. and Lee, Y.-J. (2018), "Long-term deflection prediction from computer vision-measured data history for high-speed railway bridges", Sensors, 18(5), 1488. https://doi.org/10.3390/s18051488
- Lee, J., Lee, K.-C., Sim, S.H., Lee, J. and Lee, Y.-J. (2019), "Bayesian Prediction of Pre-Stressed Concrete Bridge Deflection Using Finite Element Analysis", Sensors, 19(22), 4956. https://doi.org/10.3390/s19224956
- Lee, J., Jeong, S., Lee, J., Sim, S.-H., Lee, K.-C. and Lee, Y.-J. (2022), "Sensor data-based probabilistic monitoring of timehistory deflections of railway bridges induced by high-speed trains", Struct. Health Monitor., 21(6), 2518-2530. https://doi.org/10.1177/14759217211063424
- Li, H.N., Ren, L., Jia, Z.G., Yi, T.H. and Li, D.S. (2016), "Stateof-the-art in structural health monitoring of large and complex civil infrastructures", J. Civil Struct. Health Monitor., 6(1), 3-16. https://doi.org/10.1007/s13349-015-0108-9
- Liu, G., Niu, Y., Zhao, W., Duan, Y. and Shu, J. (2022), "Data anomaly detection for structural health monitoring using a combination network of GANomaly and CNN", Smart Struct. Syst., Int. J., 29(1), 53-62. https://doi.org/10.12989/sss.2022.29.1.053
- Manson, G. (2002), "Identifying damage sensitive, environment insensitive features for damage detection", Proceedings of the 3rd International Conference on Identification in Engineering Systems, Swansea, Wales, UK, April
- Martakis, P., Movsessian, A., Reuland, Y., Pai, S.G.S., Quqa, S., Cava, D.G., Tcherniak, D. and Chatzi, E. (2022), "A semisupervised interpretable machine learning framework for sensor fault detection", Smart Struct. Syst., Int. J., 29(1), 251-266. https://doi.org/10.12989/sss.2022.29.1.251
- Mei, H., Haider, M.F., Joseph, R., Migot, A. and Giurgiutiu, V. (2019), "Recent advances in piezoelectric wafer active sensors for structural health monitoring applications", Sensors, 19(2), 383. https://doi.org/10.3390/s19020383
- Ni, F., Zhang, J. and Noori, M.N. (2020), "Deep learning for data anomaly detection and data compression of a long-span suspension bridge", Comput.-Aided Civil Infrastr. Eng., 35, 685-700. https://doi.org/10.1111/mice.12528
- Oh, B.K., Glisic, B., Kim, Y. and Park, H.S. (2020), "Convolutional neural network-based data recovery method for structural health monitoring", Struct. Health Monitor., 19(6), 1821-1838. https://doi.org/10.1177/1475921719897571
- Posenato, D., Kripakaran, P., Inaudi, D. and Smith, I.F. (2010), "Methodologies for model-free data interpretation of civil engineering structures", Comput. Struct., 88(7-8), 467-482. https://doi.org/10.1016/j.compstruc.2010.01.001
- Shajihan, S.A.V., Wang, S., Zhai, G. and Spencer, B.F.J. (2022), "CNN based data anomaly detection using multi-channel imagery for structural health monitoring", Smart Struct. Syst., Int. J., 29(1), 181-193. https://doi.org/10.12989/sss.2022.29.1.181
- Smarsly, K. and Law, K.H. (2014), "Decentralized fault detection and isolation in wireless structural health monitoring systems using analytical redundancy", Adv. Eng. Software, 73, 1-10. https://doi.org/10.1016/j.advengsoft.2014.02.005
- Sohn, H., Farrar, C.R., Hunter, N.F. and Worden, K. (2001), "Structural health monitoring using statistical pattern recognition techniques", J. Dyn. Syst. Measur. Control, 123(4), 706-711. https://doi.org/10.1115/1.1410933
- Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W., Nadler, B.R. and Czarnecki, J.J. (2003), "A review of structural health monitoring literature: 1996-2001", Los Alamos National Laboratory, USA.
- Son, H., Yoon, C., Kim, Y., Jang, Y., Tran, L. V., Kim, S.-E., Kim, D.J. and Park, J. (2022), "Damaged cable detection with statistical analysis, clustering, and deep learning models", Smart Struct. Syst., Int. J., 29(1), 17-28. https://doi.org/10.12989/sss.2022.29.1.017
- Straser, E.G., Kiremidjian, A.S., Meng, T.H. and Redlefsen, L. (1998), "A modular, wireless network platform for monitoring structures", Proceedings of the International Modal Analysis Conference, Santa Barbara, CA, USA, February.
- Xin, J., Zhou, J., Yang, S.X., Li, X. and Wang, Y. (2018), "Bridge structure deformation prediction based on GNSS data using Kalman-ARIMA-GARCH model", Sensors, 18(1), 298. https://doi.org/10.3390/s18010298E
- Xu, X., Huang, Q., Ren, Y., Zhao, D.-Y. and Yang, J. (2019), "Sensor fault diagnosis for bridge monitoring system using similarity of symmetric responses", Smart Struct. Syst., Int. J., 23(3), 279-293. https://doi.org/10.12989/sss.2019.23.3.279
- Yang, K., Jiang, H., Ding, Y., Wang, M. and Wan, C. (2022), "Data abnormal detection using bidirectional long-short neural network combined with artificial experience", Smart Struct. Syst., Int. J., 29(1), 117-127. https://doi.org/10.12989/sss.2022.29.1.117
- Yi, T.H., Li, H.N., Song, G. and Guo, Q. (2016), "Detection of shifts in GPS measurements for a long span bridge using CUSUM chart", Int. J. Struct. Stab. Dyn., 16(04), 1640024. https://doi.org/10.1142/S0219455416400241
- Yi, T.H., Huang, H.B. and Li, H.N. (2017), "Development of sensor validation methodologies for structural health monitoring: A comprehensive review", Measurement, 109, 200-214. https://doi.org/10.1016/j.measurement.2017.05.064
- Zebari, R., Abdulazeez, A., Zeebaree, D., Zebari, D. and Saeed, J. (2020), "A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction", J. Appl. Sci. Technol. Trends, 1(2), 56-70. https://doi.org/10.38094/jastt1224