DOI QR코드

DOI QR Code

당뇨 합병증과 군령탕 구성성분의 네트워크 약리학 분석 및 효능 예측

Network Pharmacology Analysis and Efficacy Prediction of GunryeongTang Constituents in Diabetic Complications

  • 윤정주 (원광대학교 한의과대학 한방심신증후군 연구센터) ;
  • 김혜윰 (원광대학교 한의과대학 한방심신증후군 연구센터) ;
  • 태애림 (원광대학교 한의과대학 한방심신증후군 연구센터) ;
  • 이호섭 (원광대학교 한의과대학 한방심신증후군 연구센터) ;
  • 강대길 (원광대학교 한의과대학 한방심신증후군 연구센터)
  • Jung Joo Yoon (Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University) ;
  • Hye Yoom Kim (Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University) ;
  • Ai Lin Tai (Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University) ;
  • Ho Sub Lee (Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University) ;
  • Dae Gill Kang (Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University)
  • 투고 : 2023.12.07
  • 심사 : 2024.02.05
  • 발행 : 2024.02.28

초록

Objectives : GunRyeong-Tang(GRT) is a traditional herbal prescription that combines Oryeongsan and Sagunja-tang. This study employed network analysis methods on the components of GRT and target genes related to diabetes complications to predict the improvement effects of GRT on diabetes complications. Methods : The collection of active compounds of GRT and related target genes involved the utilization of public databases and the PubChem database. We selected diabetes complication-related genes using GeneCards and confirmed their correlation through comparative analysis with the target genes of GRT. We constructed a network using Cytoscape 3.9.1 and conducted topological analysis. To predict the mechanism, we performed functional enrichment analysis based on Gene Ontology (GO) biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Results : Through network analysis, 234 active compounds and 1361 related genes were collected from GRT. A total of 9,136 genes related to diabetes complications were collected, and 1,039 target genes overlapping with the components of GRT were identified. The core genes of this network were TP53, INS, AKT1, ALB, and EGFR. In addition, GRT significantly reduced the H9c2 cell size and the expression of myocardial hypertrophy biomarkers (ANP, BNP), which were increased by high glucose (HG). Conclusions : Through this study, we were able to predict the activity and mechanism of action of GRT on diabetes and diabetic complications, and confirmed the potential of GRT as a treatment for diabetes complications through the effect of GRT on improving myocardial hypertrophy for diabetic cardiomyopathy.

키워드

과제정보

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(2021R1C1C2009542), (2017R1A5A2015805).

참고문헌

  1. Zhao L, Zhang H, Li N, et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. Journal of Ethnopharmacology. 2023;309.
  2. Li S, Fan TP, Jia W, et al. Network pharmacology in traditional Chinese medicine. Evidence-based complementary and alternative medicine. 2014;2014:2.
  3. Lee BH, Cho SI. Comparison of network pharmacology based analysis results according to changes in principal herb in Sagunja-tang. 2019;27(3):189-197.
  4. Lee WY, Lee CY, Kim YS, et al. The methodological trends of traditional herbal medicine employing network pharmacology. Biomolecules. 2019;9(8):362.
  5. Han SY, Kim YK. New Approach for Herbal Formula Research: Network Pharmacology. J Physiol & Pathol Korean Med. 2016;30(6):385-396.
  6. Moncrieff J. Research on a "drug-centred" approach to psychiatric drug treatment: Assessing the impact of mental and behavioural alterations produced by psychiatric drugs. Epidemiol Psychiatr Sci. 2018;27(2):133-140.
  7. College of Korean Medicine Dept. of Prescription. Prescription of herbal medicine. Yeonglimsa. Seoul. 2003;504-506.
  8. Sa MJ. Taepyunghyeminhwajegukbang. Seoul. Kyung Hee University College of Oriental Medicine, pp 115-242, 1974.
  9. P Liu. Action mechanism of Sijunzi Decoction in treatment of type 2 diabetes mellitus based on network pharmacology. Chinese Traditional and Herbal Drugs. 2010;24:1548-1558.
  10. Liu IM, Tzeng TF, Liou SS, Chang CJ. The amelioration of streptozotocin diabetes-induced renal damage by Wu-Ling-San (Hoelen Five herb Formula), a traditional Chinese prescription. Journal of Ethnopharmacology. 2009;124(2):211-218.
  11. Yoon JJ, Lee YJ, Kang DG, Lee HS. Protective role of oryeongsan against renal inflammation and glomerulosclerosis in db/db mice. The American Journal of Chinese Medicine. 2014;42(6):1431-1452.
  12. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes," Nucleic acids research. 2000;28(1):27-30.
  13. Aleksander S, Balhoff J, Carbon S, Cherry JM, Drabkin HJ, Ebert D, Feuermann M, Gaudet P, Harris NL, Hill DP. The Gene Ontology knowledgebase in 2023. Genetics. 2023;224(1):2023
  14. Toufektchan E, Toledo F. The guardian of the genome revisited: p53 downregulates genes required for telomere maintenance, DNA repair, and centromere structure. Cancers (Basel). 2018;10:135.
  15. Gisela W. Insulin and Insulin Resistance. Clin Biochem Rev. 2005;26(2):19-39.
  16. Eileen LW, Han C, Morris JB. Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab. 2002;13(10):444-451.
  17. Stranges S, Rafalson LB, Dmochowski J, Rejman K, Tracy RP, Trevisan M, et al. Additional contribution of emerging risk factors to the prediction of the risk of type 2 diabetes: evidence from the Western New York Study. Obesity (Silver Spring). 2008;16:1370-1376.
  18. Raymond C. Harris. The Role of the Epidermal Growth Factor Receptor in Diabetic Kidney Disease. Cells. 2022;11(21):3416.
  19. Korean Diabetes Association. Diabetes Fact Sheet. Seoul. Korean Diabetes Association. 2020.
  20. International Diabetes Federation (IDF). Advocacy guide to the IDF diabetes Atlas ninth edition 2019 [Internet]. Brussels: IDF; 2019 [cited 2020 December 1].
  21. Ju YS, Ko BS. Screening of insulin-like substances from traditional herbs of diabetes prescription in donguibogam. J Korean Soc Agric Chem Biotechnol. 2002;45:47-52.
  22. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2009;32:S62-S67.
  23. Park JH. Mitochondria DNA polymorphism and type 2 diabetes mellitus. Korean Diabetes J. 2009;33:373-374.
  24. Ahn EY, Shin SJ, Choi SW, Kim EJ. Antidiabetic effects of water extracts of mulberry (Morus alba L.) twig by inhibition of disaccharidase activity in streptozotocin-induced diabetic mice. J Nutr Health. 2023;56(1):24-34.
  25. Braunwald E, Fauci A, Kasper D, Hauser S, Longo D, Jameson J. Harrison's Principles of Internal Medicine. 15th. Seoul. MIP. 2003;2178-2179, 2188.
  26. Lee H, Lee M, Park G, Khang AR. Prevalence of Chronic Diabetic Complications in Patients with Type 2 Diabetes Mellitus: A Retrospective Study Based on the National Health Insurance Service-National Health Screening Cohort in Korea, 2002~2015.Korean Journal of Adult Nursing. 2022;34(1):39-50.
  27. International Diabetes Federation (IDF). Advocacy guide to the IDF diabetes Atlas ninth edition 2019 [Internet]. Brussels: IDF; 2019 [cited 2020 December 1]. Available from: https://diabetesatlas.org/upload/resources/material/20191217_165723_2019_IDF_Advocacy_Guide_KO.pdf
  28. World Health Organization (WHO). Global report on diabetes [Internet]. Geneva: WHO; 2016 [cited 2020 December 1]. Available from: https://www.who.int/diabetes/global-report/en/
  29. Choi BC. Type II diabetes mellitus (2). 2018 [cited 2022 April 18]. Available from: http://www.health.kr/Menu.PharmReview/View.asp?PharmReview_IDX=1631
  30. Jones GC, Macklin JP, Alexander WD. Contraindications to the use of metformin: Evidence suggests that it is time to amend the list. BMJ. 2003;326:4-5.
  31. Choi JS, Park SD, Byun JS. Experimental Study on the Effects of Alismatis Lhizoma on Hyperlipidemia. The Journal of Korean Oriental Internal Medicine. 1998;19(2):392-410.
  32. Lim SJ, Kim SH. The effect of each fraction of methanol extract of Alisma canaliculatum on blood glucose levels and lipid metabolism in Streptozotocin induced diatetic rats. Journal of Nutrition and Health. 2001;34(6);619-625.
  33. Eun JS, Hong JS, So JN. Effects of the Extracts from Hoelen alba, Alismatis Rhizoma and Atractylodes Rhizoma on Proliferation and Differentiation of 3T3-L1 Cells. The Korean Society of Pharmacognosy. 1996;24(2);131-139.
  34. Han YK, Park YK. Effect of Atractylodis Rhizoma Alba water extract on streptozotocin-induced diabetes in rats. Kor. J. Herbology. 2011;26(4):23-30.
  35. Liu J, Yu J, Peng X. Poria cocos polysaccharides alleviates chronic nonbacterial prostatitis by preventing oxidative stress, regulating hormone production, modifying gut microbiota, and remodeling the DNA methylome. J Agric Food Chem. 2020;68:12661-12670.
  36. Song MY, Lim SK, Wang JH, Kim H. The Root of Atractylodes macrocephala Koidzumi Prevents Obesity and Glucose Intolerance and Increases Energy Metabolism in Mice. Int. J. Mol. Sci. 2018;19(1):E278.
  37. Lee WY, Park Y, Park Y, Ahn JK, Park SY, Lee HJ. Cytotoxic activ-ity of ergosta-4,6,8(14), 22-tetraen-3-one from the sclerotia of Polyporus umbellatus. Bull Korean Chem Soc. 2005;26(9):1464-1466.
  38. Lee HS, Hwang IH, Kim JA, Choi JY, Jang TS, Osada H, et al. Isolation of protein tyrosine phosphatase 1B inhibitory constituents from the sclerotia of Polyporus umbellatus fries. Bull Korean Chem Soc. 2011;32(2):697-700.
  39. Sato M, Tai T, Nunoura Y, Yajima Y, Kawashima S, Tanaka K. Dehydrotra-metenolic acid induces preadipocyte differentiation and sensitizes animal models of noninsulin-dependent diabetes mellitus to insulin. Biol Pharm Bull. 2000;25(1):81-86.
  40. Kaminage T, Yasukawa K, Kanno H, Tai T, Nunoura Y, Takido M. Inhibitory effects of lanostane-type triterpene acids, the components of Poria cocos, on tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin. Oncology. 1996;53(5):382-385.
  41. Nukaya H, Yamashiro H, Fukazawa H, Ishida H, Tsuji K. Isolation of inhibitors of TPA-induced mouse ear edema from Hoelen, Poria cocos. Chem Pharm Bull (Tokyo). 1996;44(4):847-849.
  42. Nam KY. The new Korean ginseng (constituent and its pharmacological efficacy). Korea Ginseng & Tabacco Research Institute, Daejeon, Korea. 1996;1-134.
  43. Seo SH, Park GK, Park JD. Korean Ginseng and Diabetes: An Insight into Antidiabetic Effects of Korean Ginseng (Panax ginseng C. A. Meyer) in Cultured Cells, Animal Models and Human Studies. Kor. J. Pharmacogn. 2020;51(1):1-29.
  44. Moon JY. Review on the Current Research of Korean Ginseng for its Antidiabetic Activity. The Korean Ginseng Research and Industry. 2009;3(1):19-26.
  45. Han DS. Pharmacognosy. Dongmyeongsa. Seoul. 1991;11:110-113.
  46. Uslu GA, Gelen V, Uslu H, Ozen H. Effects of Cinnamomum cassia extract on oxidative stress, im munreactivity of iNOS and impaired thoracic aortic reactivity induced by type II diabetes in rats. Braz J Pharm Sci. 2018;54(3):e17785.
  47. Um Y, Shim K, Lee J, Park H, Ma J. Quantitative analysis of glycyrrhizic acid in fermented Glycyrrhizae Radix by HPLC. Korean J Oriental Med. 2009;15:85-89.
  48. Shibata S, Inoue H, Iwata S, Ma R, Yu L, Ueyama H, Takayasu J, Hasegawa T, Tokuda H, Nishino A, Nishino H, Iwashima A. Inhibitory effects of licochalcone A isolated from Glycyrrhiza inflata root on inflammatory ear edema and tumour promotion in mice. Planta Med. 1991;57:221-224.
  49. Han SB, Gu HA, Kim SJ, Kim HJ, Kwon SS, Kim HS, Jeon SH, Hwang JP, Park SN. Comparative study on antioxidative activity of Glycyrrhiza uralensis and Glycyriza glabra extracts by country of origin. J Soc Cosmet Sci Korea. 2013;39:1-8.
  50. Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation. 2007;115:3213-3223.
  51. Asbun J, Villarreal FJ. The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol. 2006;47:693-700.