DOI QR코드

DOI QR Code

공유 문서를 활용한 과학 수업에서 나타난 학생 담화의 특징 -인식 네트워크 분석(ENA)의 활용-

Exploring Collaborative Learning Dynamics in Science Classes Using Google Docs: An Epistemic Network Analysis of Student Discourse

  • 신은혜 (서울대학교 교육종합연구원)
  • Eunhye Shin (Center for Educational Research, Seoul National University)
  • 투고 : 2023.12.09
  • 심사 : 2024.01.13
  • 발행 : 2024.02.29

초록

본 연구는 과학 수업에서 공유 문서의 활용이 학생의 담화 패턴과 학습에 미치는 영향을 조사하기 위해 학생들의 담화를 인식 네트워크 분석(Epistemic Network Analysis) 방법으로 분석하였다. 49명의 중학교 2학년 학생을 대상으로 과학 교사인 연구자 본인이 Google Docs를 기반으로 제작된 활동지를 활용한 공유 문서와 동일 내용의 종이 활동지를 활용한 일반 수업을 실시하고, 각 수업에서 수집된 담화를 비교 분석하였다. 분석 결과, 공유 문서 활용 수업에서는 일반 수업에 비해 과제 수행과 관련된 발언의 비율이 더 높았으며, 특히 사진 촬영과 업로드에 대한 담화가 두드러졌다. 그러나 이러한 담화가 교사가 의도한 동료 학습으로 이어지지는 않았다. 성취 수준에 따른 분석 결과에서는 공유 문서 활용 수업에서 하위 수준 학생의 발언 비율이 상대적으로 더 높았으며, 상위 학생과 하위 학생 간의 발언 유형 및 연결 구조에서 차이가 나타났다. 또한 상위 수준 학생이 의견과 설명 제시를 주도하면 하위 학생이 이를 받아 적는 역할 분담이 관찰되었으며, 공유 문서 활용 수업에서 그러한 경향이 더 뚜렷하였다. 마지막으로 인식 네트워크 분석으로 정전기의 원인에 대한 학생의 인식 변화를 시각화하였다. 연구 결과를 바탕으로 공유 문서를 활용하여 협력 학습을 촉진하기 위해 다양한 의견과 산출물의 공유가 가능한 개방적 문제를 포함하는 전략과 인식 네트워크 분석을 활용한 개념 학습 효과 확인 가능성을 제언하였다.

This study analyzed students' discourse and learning to investigate the impact of using Google Docs in science classes. The researcher, who is also a science teacher, conducted classes for 49 second-year middle school students. The classes included one using Google Docs and another using traditional paper worksheets covering identical content. Students' discourse collected from each class was compared and analyzed using Epistemic Network Analysis (ENA). The findings indicated that in the class using Google Docs, the proportion of discourse related to task was higher compared to the traditional class. More specifically, discourse regarding taking and uploading photos was prominent. However, such discourse did not lead to peer learning as intended by the teacher. An analysis based on achievement levels revealed that the class utilizing Google Docs had a relatively higher proportion of discourse from lower-achieving students. Additionally, differences were observed in the types of utterances and connection structures between the higher and lower-achieving students. The higher-achieving students took a leading role in providing suggestions and explanations, while the lower-achieving students played a role in transcribing them, with this tendency being more pronounced in the class using Google Docs. Lastly, students' changes in perception regarding the cause of static electricity were visualized using ENA. Based on the research findings, this study proposes strategies to enhance collaborative learning using Google Docs, including the use of open-ended problems to allow diverse opinions and outputs, and exploring the potential use of ENA to assess the learning effects of conceptual learning.

키워드

참고문헌

  1. Bai, Y., Shen, S., Chen, L., & Zhuo, Y. (2011, July). Cloud learning: A new learning style. In 2011 International Conference on Multimedia Technology (pp. 3460-3463). IEEE.
  2. Blau, I., & Caspi, A. (2009). Sharing and collaborating with Google Docs: The influence of psychological ownership, responsibility, and student's attitudes on outcome quality, World Conference on E-Learning in Corporate, Government, Healthcare and Higher Education, Oct 26, 2009 in Vancouver, Canada.
  3. Bonham, S. (2011). Whole class laboratories with Google Docs. The Physics Teacher, 49, 22-23. https://doi.org/10.1119/1.3527749
  4. Bowman, D., Swiecki, Z., Cai, Z., Wang, Y., Eagan, B., Linderoth, J., & Shaffer, D. W. (2021). The mathematical foundations of epistemic network analysis. In Advances in Quantitative Ethnography: Second International Conference, ICQE 2020, Malibu, CA, USA, February 1-3, 2021, Proceedings 2 (pp. 91-105). Springer International Publishing.
  5. Bressler, D. M., Bodzin, A. M., Eagan, B., & Tabatabai, S. (2019). Using epistemic network analysis to examine discourse and scientific practice during a collaborative game. Journal of Science Education and Technology, 28, 553-566.
  6. Cha, H. J., Ga, S. H., & Yoon, H. G. (2023). Characteristic of pre-service elementary teachers' TPACK in science lesson planning using VR/AR contents: Focusing on Epistemic Network Analysis. Journal of the Korean Association for Science Education, 43(3), 225-226.
  7. Cho, H. H., & Choi, K. H. (2005). Theory and practice of science education (2nd Ed.), (pp. 365). Paju: Kyoyookbook Publication Co.
  8. Edwards, D., & Mercer, N. (1987). Common knowledge : The Development of Understanding in the Classroom. Routledge.
  9. Ercan, T. (2009). Effective use of cloud computing in educational institution, Procedia Social and Behavioral Sciences 2 (2010) 938-942 https://doi.org/10.1016/j.sbspro.2010.03.130
  10. Fan, Y., Tan, Y., Rakovic, M., Wang, Y., Cai, Z., Shaffer, D. W., & Gasevic, D. (2023). Dissecting learning tactics in MOOC using ordered network analysis. Journal of Computer Assisted Learning, 39(1), 154-166. https://doi.org/10.1111/jcal.12735
  11. Fuchs, B. (2014). The writing is on the wall: using Padlet for whole-class engagement. Loex Quarterly, 40(4), 4.
  12. Gee, J. P. (2015). Social linguistics and literacies : Ideology in discourses. London; New York: Routledge.
  13. Gonzalez-Martinez, J. A., Bote-Lorenzo, M. L., Gomez-Sanchez, E., & Cano-Parra, R. (2015). Cloud computing and education: A state-of-the-art survey. Computers & Education, 80, 132-151. https://doi.org/10.1016/j.compedu.2014.08.017
  14. Hirsch, B., & Ng, J. W. P. (2011). Education beyond the Cloud: Anytime-anywhere learning in a smart campus environment. 6th International Conference on Internet Technology and Secured Transactions, 11-14 December 2011, Abu Dhabi, United Arab Emirates. 718-723
  15. Hong, M. S., Lee, J. B., Kim, S. Y., & Kim, J. B. (2009). Development of tutorial for concept learning about electrostatics in middle school. School Science Journal, 3(1), 13-29. https://doi.org/10.15737/SSJ.3.1.200902.13
  16. Jeno, L. M., Adachi, P. J., Grytnes, J. A., Vandvik, V., & Deci, E. L. (2019). The effects of m-learning on motivation, achievement and well-being: A Self-Determination Theory approach. British Journal of Educational Technology, 50(2), 669-683.
  17. Jeong H. S. (2013). A case study on a collaborative media production and writing class in a "SMART Education" Environment. Journal of Elementary Korean Education, 53(0), 301-335.
  18. Jo, M. J. (2017). An investigation of teaching practices with smart technologies of science teachers and their opinions of how to apply smart technologies in science education. Master's thesis, Seoul National University.
  19. Karumbaiah, S., & Baker, R. S. (2021). Studying Affect Dynamics Using Epistemic Networks. In A. R. Ruis & S. B. Lee (Eds.), Advances in quantitative ethnography. ICQE 2021. Communications in Computer and Information Science, Vol. 1312 (pp. 362-374). Springer International Publishing.
  20. Kim, D. G., Park, S. H., Jung, J. Y., & Lee J. H. (2008). A Study on the development of learning model for Wiki-based collaborative writing. Journal of Elementary Korean Education, (37), 5-40.
  21. Kim, H. J., & Song, J. W. (2020). A Literature Review of Mobile Activities in Teaching and Learning Science: With Regard to Support for Learners' Agency. Journal of the Korean Association for Research in Science Education, 40(5), 451-462.
  22. Kim, J. Y., Shin, A. K., Park, K. T., & Choi, B. S. (2001). The effects of science inquiry experiments emphasizing social interactions and the analysis of social interactions by cognitive level of the students. Journal of the Korean Chemical Society, 45(5), 470-480.
  23. Kouh, M. (2016). Whole class laboratories: More examples. The Physics Teacher, 54(3), 174-177. https://doi.org/10.1119/1.4942143
  24. Lee, E. K., & Kang, S. J. (2008). The effect of SWH application on problem-solving type inquiry modules through student-student verbal interactions. Journal of the Korean Association for Research in Science Education, 28(2), 130-138.
  25. Lee, H. Y., Chang, S. S., Seong, S. K., Kang, S. J., & Choi. B. S. (2002). Analysis of student - student interaction in interactive science inquiry experiment. Journal of the Korean Association for Research in Science Education, 22(3), 660-670.
  26. Lee, J. Y. (2017). Effects of digital collaborative writing- with quantitative analysis of student writer's response., 11(5), 199-234.
  27. Lin, Y. T., Chang, C. H., Hou, H. T., & Wu, K. C. (2016). Exploring the effects of employing Google Docs in collaborative concept mapping on achievement, concept representation, and attitudes. Interactive Learning Environments, 24(7), 1552-1573.
  28. Martin, R., Sexton, C., & Gerlovich, J. (2002). Teaching science for all children. 2nd ed. Boston:Allyn and Bacon.
  29. Marquart, C. L., Hinojosa, C., Swiecki, Z., Eagan, B., & Shaffer, D. W. (2021). Epistemic network analysis (Version 1.7.0) [Software]. Available from http://app.epistemicnetwork.org
  30. Mell, P., & Grance, T. (2011). The NIST definition of cloud computing.
  31. Nachtigall, V., & Sung, H. (2019). Students' collaboration patterns in a productive failure setting: an epistemic network analysis of contrasting cases. In Advances in Quantitative Ethnography: First International Conference, ICQE 2019, Madison, WI, USA, October 20-22, 2019, Proceedings 1 (pp. 165-176). Springer International Publishing.
  32. Nguyen, H. (2022). Exploring group discussion with conversational agents using epistemic network analysis. Communications in Computer and Information Science, 1522, 378-394. https://doi.org/10.1007/978-3-030-93859-8_25
  33. Oishi, L. (2007). Working together: Google Apps goes to school. Technology & Learning, 27(9), 46-47.
  34. Parrish, J. C., Pleasants, J., Reid, J. W., Mulvey, B. K., Peters-Burton, E. E., & Recker, A. (2022). Using Card Sort Epistemic Network Analysis to explore preservice teachers' ideas about the nature of engineering. Science & Education, 1-26.
  35. Robert G. J. (2003). Emerging technologies Blog and Wikis: Environments for on-line collaboration, Language Learning & Technology, 7(2).
  36. Ruis, A. R., Siebert-Evenstone, A. L., Pozen, R., Eagan, B. R., & Shaffer, D. W. (2019). Finding common ground: A method for measuring recent temporal context in analyses of complex, collaborative thinking. In K.
  37. Sanchez, M., Aguilar, J., Cordero, J., & Valdiviezo, P. (2015, July). Basic features of a reflective middleware for intelligent learning environment in the cloud (IECL). In 2015 Asia-Pacific Conference on Computer Aided System Engineering (pp. 1-6). IEEE.
  38. Scianna, J., Gagnon, D., Knowles, B. (2021). Counting the game: Visualizing changes in play by incorporating game events. In A. R. Ruis & S.B. Lee (Eds.), Advances in quantitative ethnography. ICQE 2021. Communications in Computer and Information Science, Vol. 1312 (pp. 218-231). Springer International Publishing.
  39. Shaffer, D. W. (2017). Quantitative ethnography. Madison, WI: Cathcart Press.
  40. Shaffer, D. W., Collier, W., & Ruis, A. R. (2016). A tutorial on epistemic network analysis: Analyzing the structure of connections in cognitive, social, and interaction data. Journal of Learning Analytics, 3(3), 9-45. https://doi.org/10.18608/jla.2016.33.3
  41. Shaffer, D. W., & Ruis, A. R. (2017). Epistemic network analysis: A worked example of theory-based learning analytics. In C. Lang, G. Siemens, A. F. Wise, & D. Gasevic (Eds.), Handbook of learning analytics (pp. 175-187). Society for Learning Analytics Research.
  42. Shin, E. H. (2021a). An Investigation of Teaching Practices and Opinions of Teacher about Using Cloud Apps in Interactive Online Science Class. Journal of Learner-Centered Curriculum and Instruction Vol. 21, No. 14, 2021, pp. 811-824. https://doi.org/10.22251/jlcci.2021.21.14.811
  43. Shin, E. H. (2021b). Analysis of the Types of Teachers' Questioning and Feedback in Science Classes using Cloud Apps. School Science Journal, 15(2), 135-148.
  44. Siebert-Evenstone, A., Arastoopour Irgens, G., Collier, W., Swiecki, Z., Ruis, A. R., & Williamson Shaffer, D. (2017). In search of conversational grain size: Modelling semantic structure using moving stanza windows. Journal of Learning Analytics, 4(3), 123-139.
  45. Suwantarathip, O., & Wichadee, S. (2014). The effects of collaborative writing activity using Google Docs on students' writing abilities. Turkish Online Journal of Educational Technology, 13(2), 148-157.
  46. Stevenson, M., & Hedberg, J. G. (2013). Learning and design with online real-time collaboration. Educational Media International, 50(2), 120-134. https://doi.org/10.1080/09523987.2013.795352
  47. Vygotsky, L. S. (2012). Thought and language. MIT press.
  48. Weiler, D. T., Lingg, A. J., Eagan, B. R., Shaffer, D. W., & Werner, N. E. (2022). Quantifying the qualitative: exploring epistemic network analysis as a method to study work system interactions. Ergonomics, 65(10), 1434-1449. https://doi.org/10.1080/00140139.2022.2051609
  49. Wooldridge, A. R., Carayon, P., Eagan, B. R., & Shaffer, D. W. (2018). Quantifying the qualitative with epistemic network analysis: A human factors case study of task-allocation communication in a primary care team. IIE Transactions on Healthcare Systems Engineering, 8, 72-82. https://doi.org/10.1080/24725579.2017.1418769
  50. Yun, J. H. (2017). The influences of individualized learning adapted to student's conception and small group learning using smart devices in secondary chemistry classes. Doctoral dissertation, Seoul National University.
  51. Zambrano, A. F., Barany, A., Ocumpaugh, J., Nasiar, N., Hutt, S., Goslen, A., ... & Mott, B. (2023, October). Cracking the Code of Learning Gains: Using Ordered Network Analysis to Understand the Influence of Prior Knowledge. In International Conference on Quantitative Ethnography (pp. 18-33). Cham: Springer Nature Switzerland.
  52. Zhang, S., Gao, Q., Sun, M., Cai, Z., Li, H., Tang, Y., & Liu, Q. (2022). Understanding student teachers'_collaborative problem solving: Insights from an epistemic network analysis (ENA). Computers & Education, 183, Article 104485.
  53. Zioga, C., & Bikos, K. (2020). Collaborative writing using Google Docs in primary education: development of argumentative discourse. Turkish Online Journal of Distance Education, 21(1), 133-142. https://doi.org/10.17718/tojde.690372