DOI QR코드

DOI QR Code

중강도 운동을 실시한 비만 쥐에서 정향 투여가 지질과 근육 대사에 미치는 영향

The effects of Syzygium aromaticum L. administration on lipid and muscle metabolism in obese rats subjected to moderate-intensity exercise

  • 김민주 (대구한의대학교 한의과대학 본초약리학교실) ;
  • 노성수 (대구한의대학교 한의과대학 본초약리학교실) ;
  • 서성욱 (대구과학대학교 물리치료학과) ;
  • 김경 (대구대학교 물리치료학과) ;
  • 신미래 (대구한의대학교 한의과대학 본초약리학교실)
  • Min Ju Kim (Department of Herbology, College of Korean Medicine, Daegu Haany University) ;
  • Seong-Soo Roh (Department of Herbology, College of Korean Medicine, Daegu Haany University) ;
  • Seong-Wook Seo (Department of Physical Therapy, Daegu Science University) ;
  • Kyoung Kim (Department of Physical Therapy, Daegu University) ;
  • Mi-Rae Shin (Department of Herbology, College of Korean Medicine, Daegu Haany University)
  • 투고 : 2023.11.03
  • 심사 : 2023.12.27
  • 발행 : 2024.02.28

초록

본 연구에서는 중강도 운동을 한 비만 흰쥐를 대상으로 정향 투여에 따른 염증 관련 단백질, 근육 합성 및 분해 관련 단백질에 미치는 영향을 평가하였다. 규칙적인 중강도 운동은 혈청 내 산화 스트레스와 leptin 수준을 억제시켰다. 또한, 염증 관련 단백질을 감소시켰으며, 근육 합성 관련 단백질을 활성화 및 근육 분해 관련 단백질 억제를 통해 근육 대사를 조절하였다. 여기에 정향의 투여는 혈청 내 염증성 사이토카인 IL-1β를 유의적으로 감소시켜 염증을 효과적으로 개선하는 효과를 발휘하였다.

Purpose: This study examined whether regular moderate-intensity treadmill exercise (Ex) and Syzygium aromaticum L. (SA) administration can influence lipid and muscle metabolism in obese rats induced by a 60% high-fat diet (HFD). Methods: Rats, except those in the Normal group, were exposed to a 60% HFD for 4 weeks to induce obesity. The obese rats were assigned randomly to three groups: HFD control group, HFD+Ex group, and HFD+Ex+SA group. Treadmill exercise was conducted five times a week for 4 weeks, with a 5° incline and a speed of 18 m/min (Week 1: 20 minutes; Weeks 2: 25 minutes; Weeks 3-4: 30 minutes). Serum analysis was performed. Western blot analysis was conducted on the liver and soleus muscle, and histopathological analysis was carried out on the liver and adipose tissues. Results: The body weight change in the Ex groups was significantly lower than in the HFD control group, while the soleus muscle weight in the HFD+Ex group increased significantly. The histopathological examination in the Ex groups revealed a marked reduction in liver lipid accumulation and a decrease in adipocyte size in adipose tissue. Obesity induction increased leptin levels substantially, but Ex notably reversed these changes. Ex resulted in significant inhibition of ROS and ONOO-, whereas the serum inflammatory cytokine, IL-1β, and total cholesterol were reduced only by SA administration. Furthermore, the inflammatory proteins in the liver were inhibited more effectively when Ex was supplemented with SA. The expression of the muscle synthesis-related proteins and degradation proteins were modulated by Ex and Ex+SA. Conclusion: Ex significantly affected lipid and muscle metabolism, and adding SA alleviated the inflammation.

키워드

과제정보

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korea Government (MSIP) (No. 2018R1A5A2025272) and the Ministry of Education (2021R1I1A1A01059605).

참고문헌

  1. Brandao SCS, Godoi ETAM, de Oliveira Cordeiro LH, Bezerra CS, de Oliveira Xavier Ramos J, de Arruda GF, et al. COVID-19 and obesity: the meeting of two pandemics. Arch Endocrinol Metab 2021; 65(1): 3-13.
  2. Andolfi C, Fisichella PM. Epidemiology of obesity and associated comorbidities. J Laparoendosc Adv Surg Tech A 2018; 28(8): 919-94. https://doi.org/10.1089/lap.2018.0380
  3. Ghanbari M, Momen Maragheh S, Aghazadeh A, Mehrjuyan SR, Hussen BM, Abdoli Shadbad M, et al. Interleukin-1 in obesity-related low-grade inflammation: From molecular mechanisms to therapeutic strategies. Int Immunopharmacol 2021; 96: 107765.
  4. Paolucci EM, Loukov D, Bowdish DM, Heisz JJ. Exercise reduces depression and inflammation but intensity matters. Biol Psychol 2018; 133: 79-84. https://doi.org/10.1016/j.biopsycho.2018.01.015
  5. Han TR. Exercise in the elderly. J Korean Acad Rehabil Med 2002; 26(2): 121-126.
  6. Celik O, Yildiz BO. Obesity and physical exercise. Minerva Endocrinol (Torino) 2021; 46(2): 131-144. https://doi.org/10.23736/S2724-6507.20.03361-1
  7. Herzog W. Reflections on obesity, exercise, and musculoskeletal health. J Sport Health Sci 2020; 9(2): 108-109. https://doi.org/10.1016/j.jshs.2019.11.004
  8. Tak YJ, Lee SY. Long-term efficacy and safety of anti-obesity treatment: where do we stand? Curr Obes Rep 2021; 10(1): 14-30. https://doi.org/10.1007/s13679-020-00422-w
  9. Ryan DH. Drugs for treating obesity. Handb Exp Pharmacol 2022; 274: 387-414. https://doi.org/10.1007/164_2021_560
  10. Bartell SM, Rayalam S, Ambati S, Gaddam DR, Hartzell DL, Hamrick M, et al. Central (ICV) leptin injection increases bone formation, bone mineral density, muscle mass, serum IGF-1, and the expression of osteogenic genes in leptin-deficient ob/ob mice. J Bone Miner Res 2011; 26(8): 1710-1720. https://doi.org/10.1002/jbmr.406
  11. Collins KH, Gui C, Ely EV, Lenz KL, Harris CA, Guilak F, et al. Leptin mediates the regulation of muscle mass and strength by adipose tissue. J Physiol 2022; 600(16): 3795-3817. https://doi.org/10.1113/JP283034
  12. Kemp JG, Blazev R, Stephenson DG, Stephenson GM. Morphological and biochemical alterations of skeletal muscles from the genetically obese (ob/ob) mouse. Int J Obes 2009; 33(8): 831-841. https://doi.org/10.1038/ijo.2009.100
  13. Peng J, Yin L, Wang X. Central and peripheral leptin resistance in obesity and improvements of exercise. Horm Behav 2021; 133: 105006.
  14. Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 2015; 96(3): 183-195. https://doi.org/10.1007/s00223-014-9915-y
  15. Batiha GE, Alkazmi LM, Wasef LG, Beshbishy AM, Nadwa EH, Rashwan EK. Syzygium aromaticum L. (Myrtaceae): traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomolecules 2020; 10(2): 202.
  16. Cortes-Rojas DF, de Souza CR, Oliveira WP. Clove (Syzygium aromaticum): a precious spice. Asian Pac J Trop Biomed 2014; 4(2): 90-96. https://doi.org/10.1016/S2221-1691(14)60215-X
  17. Vicidomini C, Roviello V, Roviello GN. Molecular basis of the therapeutical potential of clove (Syzygium aromaticum L.) and clues to its anti-COVID-19 utility. Molecules 2021; 26(7): 1880.
  18. Dalai MK, Bhadra S, Chaudhary SK, Bandyopadhyay A, Mukherjee PK. Anti-cholinesterase activity of the standardized extract of Syzygium aromaticum L. Pharmacogn Mag 2014; 10(Suppl 2): S276-S282. https://doi.org/10.4103/0973-1296.133275
  19. Li HY, Lee BK, Kim JS, Jung SJ, Oh SB. Eugenol inhibits ATP-induced P2X currents in trigeminal ganglion neurons. Korean J Physiol Pharmacol 2008; 12(6): 315-321. https://doi.org/10.4196/kjpp.2008.12.6.315
  20. Burniston JG. Changes in the rat skeletal muscle proteome induced by moderate-intensity endurance exercise. Biochim Biophys Acta 2008; 1784(7-8): 1077-1086. https://doi.org/10.1016/j.bbapap.2008.04.007
  21. Samadian Z, Tofighi A, Razi M, Tolouei Azar J, Ghaderi Pakdel F. Moderate-intensity exercise training ameliorates the diabetes-suppressed spermatogenesis and improves sperm parameters: insole and simultaneous with insulin. Andrologia 2019; 51(11): e13457.
  22. Ali SF, LeBel CP, Bondy SC. Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicology 1992; 13(3): 637-648. PUBMED https://doi.org/10.1016/0892-0362(91)90081-7
  23. Kooy NW, Royall JA, Ischiropoulos H, Beckman JS. Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic Biol Med 1994; 16(2): 149-156. https://doi.org/10.1016/0891-5849(94)90138-4
  24. Kojta I, Chacinska M, Blachnio-Zabielska A. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients 2020; 12(5): 1305.
  25. Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK, et al. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc 2009; 41(2): 459-471. https://doi.org/10.1249/MSS.0b013e3181949333
  26. Swift DL, McGee JE, Earnest CP, Carlisle E, Nygard M, Johannsen NM. The effects of exercise and physical activity on weight loss and maintenance. Prog Cardiovasc Dis 2018; 61(2): 206-213. https://doi.org/10.1016/j.pcad.2018.07.014
  27. Hunter GR, Fisher G, Neumeier WH, Carter SJ, Plaisance EP. Exercise training and energy expenditure following weight loss. Med Sci Sports Exerc 2015; 47(9): 1950-1957. https://doi.org/10.1249/MSS.0000000000000622
  28. Alkhatib B, Agraib L, Hasan H, Qasrawi DM, Al-Shorman A. The use of herbs, dietary products, and different types of diet for weight loss purposes. Iran J Public Health 2023; 52(7): 1390-1398. https://doi.org/10.18502/ijph.v52i7.13240
  29. Wankhede S, Langade D, Joshi K, Sinha SR, Bhattacharyya S. Examining the effect of Withania somnifera supplementation on muscle strength and recovery: a randomized controlled trial. J Int Soc Sports Nutr 2015; 12(1): 43.
  30. Petridou A, Siopi A, Mougios V. Exercise in the management of obesity. Metabolism 2019; 92: 163-169. https://doi.org/10.1016/j.metabol.2018.10.009
  31. Foright RM, Presby DM, Sherk VD, Kahn D, Checkley LA, Giles ED, et al. Is regular exercise an effective strategy for weight loss maintenance? Physiol Behav 2018; 188: 86-93. https://doi.org/10.1016/j.physbeh.2018.01.025
  32. Stanford KI, Middelbeek RJ, Goodyear LJ. Exercise effects on white adipose tissue: beiging and metabolic adaptations. Diabetes 2015; 64(7): 2361-2368. https://doi.org/10.2337/db15-0227
  33. Yang Y, Li X, Liu Z, Ruan X, Wang H, Zhang Q, et al. Moderate treadmill exercise alleviates NAFLD by regulating the biogenesis and autophagy of lipid droplet. Nutrients 2022; 14(22): 4910.
  34. Murphy J, Moullec G, Santosa S. Factors associated with adipocyte size reduction after weight loss interventions for overweight and obesity: a systematic review and meta-regression. Metabolism 2017; 67: 31-40. https://doi.org/10.1016/j.metabol.2016.09.009
  35. Perez-Torres I, Castrejon-Tellez V, Soto ME, Rubio-Ruiz ME, Manzano-Pech L, Guarner-Lans V. Oxidative stress, plant natural antioxidants, and obesity. Int J Mol Sci 2021; 22(4): 1786.
  36. Cohen MM Jr. Role of leptin in regulating appetite, neuroendocrine function, and bone remodeling. Am J Med Genet A 2006; 140A(5): 515-524. https://doi.org/10.1002/ajmg.a.31099
  37. Katsiki N, Mikhailidis DP, Banach M. Leptin, cardiovascular diseases and type 2 diabetes mellitus. Acta Pharmacol Sin 2018; 39(7): 1176-1188. https://doi.org/10.1038/aps.2018.40
  38. Yu N, Ruan Y, Gao X, Sun J. Systematic review and meta-analysis of randomized, controlled trials on the effect of exercise on serum leptin and adiponectin in overweight and obese individuals. Horm Metab Res 2017; 49(3): 164-173. https://doi.org/10.1055/s-0042-121605
  39. Silveira LS, Pimentel GD, Souza CO, Biondo LA, Teixeira AA, Lima EA, et al. Effect of an acute moderate-exercise session on metabolic and inflammatory profile of PPAR-α knockout mice. Cell Biochem Funct 2017; 35(8): 510-517. https://doi.org/10.1002/cbf.3308
  40. Lee Y, Lee J, Lee MS, Chang E, Kim Y. Chrysanthemum morifolium flower extract ameliorates obesity-induced inflammation and increases the muscle mitochondria content and AMPK/SIRT1 activities in obese rats. Nutrients 2021; 13(10): 3660.
  41. Cortez M, Carmo LS, Rogero MM, Borelli P, Fock RA. A high-fat diet increases IL-1, IL-6, and TNF-α production by increasing NF-κB and attenuating PPAR-γ expression in bone marrow mesenchymal stem cells. Inflammation 2013; 36(2): 379-386. https://doi.org/10.1007/s10753-012-9557-z
  42. Yoshida T, Delafontaine P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells 2020; 9(9): 1970.
  43. Schiaffino S, Mammucari C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet Muscle 2011; 1(1): 4.
  44. Yoshida T, Semprun-Prieto L, Sukhanov S, Delafontaine P. IGF-1 prevents ANG II-induced skeletal muscle atrophy via Akt- and Foxo-dependent inhibition of the ubiquitin ligase atrogin-1 expression. Am J Physiol Heart Circ Physiol 2010; 298(5): H1565-H1570. https://doi.org/10.1152/ajpheart.00146.2010
  45. Kim JC, Kang YS, Noh EB, Seo BW, Seo DY, Park GD, et al. Concurrent treatment with ursolic acid and low-intensity treadmill exercise improves muscle atrophy and related outcomes in rats. Korean J Physiol Pharmacol 2018; 22(4): 427-436. https://doi.org/10.4196/kjpp.2018.22.4.427