참고문헌
- Kim, SeonWook & Yang, Kiduk (2022). Topic model augmentation and extension method using LDA and BERTopic. Journal of the Korean Society for Information Management, 39(3), 99-132. http://doi.org/10.3743/KOSIM.2022.39.3.099
- Kim, SeonWook, Yang, Kiduk, & Lee, HyeKyung (2022). Analysis of research topic trend in library and information science using dynamic topic modeling. Journal of Korean Library and Information Science Society, 53(2), 265-284. http://doi.org/10.16981/kliss.53.2.202206.265
- Kim, Tae Kyung & Kim, Changsik (2018). Research trends analysis of information security using text mining. Journal of the Korea Society of Digital Industry and Information Management, 14(2), 19-25. http://dx.doi.org/10.17662/ksdim.2018.14.2.019
- Lee, Ji-Yong, Choi, You Lee, Kim, Dae Geon, & Lee, Seungbak (2022). Types of violence appearing in the sports field: case law analysis using text mining. The Korean Journal of Physical Education, 61(5), 43-54. http://dx.doi.org/10.23949/kjpe.2022.09.61.5.4
- Lim, Jeonghoon (2022). Analysis of research trends in information literacy education using keyword network analysis and topic modeling. Journal of the Korean Society for Information Management, 39(4), 23-48. http://dx.doi.org/10.3743/KOSIM.2022.39.4.023
- Park, Jahyun & Song, Min (2013). A study on the research trends in Library & Information Science in Korea using topic modeling. Journal of the Korean Society for Information Management, 30(1), 7-32. https://doi.org/10.3743/KOSIM.2013.30.1.007
- Park, JunHyeong & Oh, Hyo-Jung (2017). Comparison of topic modeling methods for analyzing research trends of archives management in Korea: Focused on LDA and HDP. Journal of Korean Library and Information Science Society, 48(4), 235-258. https://doi.org/10.16981/kliss.48.4.201712.235
- Ali, I. & Naeem, M. A. (2022). Identifying and profiling user interest over time using social data. In 2022 24th International Multitopic Conference (INMIC), 1-6. https://doi.org/10.1109/INMIC56986.2022.9972955
- Angelov, D. (2020). Top2Vec: Distributed representations of topics. arXiv preprint arXiv:2008.09470. https://doi.org/10.48550/arXiv.2008.09470
- Blei, D. & Lafferty, J. (2005). Correlated topic models. Advances in Neural Information Processing Systems, 18, 147-154.
- Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3, 993-1022.
- Chen, A. T., Sheble, L., & Eichler, G. (2013). Topic modeling and network visualization to explore patient experiences. In Visual Analytics in Healthcare Workshop 2013.
- Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391-407. https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
- Dur, B. I. U. (2014). Data visualization and infographics in visual communication design education at the age of information. Journal of Arts and Humanities, 3(5), 39-50. https://doi.org/10.18533/journal.v3i5.460
- Egger, R. & Yu, J. (2022). A topic modeling comparison between LDA, NMF, Top2Vec, and BERTopic to demystify twitter posts. Frontiers in Sociology, 7, 886498. https://doi.org/10.3389/fsoc.2022.886498
- Gao, Q., Huang, X., Dong, K., Liang, Z., & Wu, J. (2022). Semantic-enhanced topic evolution analysis: a combination of the dynamic topic model and word2vec. Scientometrics, 127, 1543-1563. https://doi.org/10.1007/s11192-022-04275-z
- Grootendorst, M. (2022). BERTopic: Neural topic modeling with a class-based TF-IDF procedure. arXiv preprint arXiv:2203.05794. https://doi.org/10.48550/arXiv.2203.05794
- Hofmann, T. (1999). Probabilistic latent semantic indexing. In Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 50-57. https://doi.org/10.1145/3130348.3130370
- Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2019). Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey. Multimedia Tools and Applications, 78(11), 15169-15211. https://doi.org/10.1007/s11042-018-6894-4
- Jing, X. Y., Zhang, D., & Tang, Y. Y. (2004). An improved LDA approach. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(5), 1942-1951. https://doi.org/10.1109/tsmcb.2004.831770
- Li, C., Lu, Y., Wu, J., Zhang, Y., Xia, Z., Wang, T., Yu, D., Chen, X., Liu, P., & Guo, J. (2018). LDA meets Word2Vec: A novel model for academic abstract clustering. In Proceedings of the 2018 Web Conference Companion (WWW '18 Companion), 1699-1706. https://doi.org/10.1145/3184558.3191629
- Li, W. & McCallum, A. (2006). Pachinko allocation: DAG-structured mixture models of topic correlations. In Proceedings of the 23rd International Conference on Machine Learning, 577-584. https://doi.org/10.1145/1143844.1143917
- Mehrotra, R., Sanner, S., Buntine, W., & Xie, L. (2013). Improving LDA topic models for microblogs via tweet pooling and automatic labeling. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, 889-892. https://doi.org/10.1145/2484028.2484166
- Moody, C. E. (2016). Mixing Dirichlet topic models and word embeddings to make lda2vec. arXiv preprint arXiv:1605.02019. https://doi.org/10.48550/arXiv.1605.02019
- Reimers, N. & Gurevych, I. (2019). Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 3982-3992. https://doi.org/10.18653/v1/D19-1410
- Sia, S., Dalmia, A., & Mielke, S. J. (2020). Tired of topic models? Clusters of pretrained word embeddings make for fast and good topics too!. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP), 1728-1736. https://doi.org/10.18653/v1/2020.emnlp-main.135
- Vayansky, I. & Kumar, S. A. (2020). A review of topic modeling methods. Information Systems, 94, 1-15. https://doi.org/10.1016/j.is.2020.101582
- Yuan, C. & Yang, H. (2019). Research on K-value selection method of K-means clustering algorithm. J, 2(2), 226-235. https://doi.org/10.3390/j2020016